answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kenny6666 [7]
1 year ago
5

What charge accumulates on the plates of a 2.0-μF air-filled capacitor when it is charged until the potential difference across

its plates is 100 V?
Physics
2 answers:
enot [183]1 year ago
7 0

Answer:

0.0002 C.

Explanation:

Charge: This can be defined as the ratio of current to time flowing in a circuit. The S.I unit of charge is Coulombs (C)

Mathematically, charge can be expressed as

Q = CV ................................. Equation 1

Where Q = amount of charge, C = capacitance of the capacitor, V = potential difference across the plates.

Given: C = 2.0-μF = 2×10⁻⁶ F, V = 100 V.

Substitute into equation 1

Q = 2×10⁻⁶× 100

Q = 2×10⁻⁴ C

Q = 0.0002 C.

The amount of charge accumulated = 0.0002 C

Oksi-84 [34.3K]1 year ago
3 0

Answer:

The capacitor accumulates 0.2 mC

Explanation:

The capacitance (with units Faraday) of a capacitor with a charge Q (with units Columbus) and a potential difference ΔV (with units Volts) is:

C=\frac{Q}{\varDelta V} (1)

In our case C=2.0\times10^{-6}F and ΔV=100V, so we can solve (1) for Q and use those values:

C=\frac{Q}{\varDelta V}

Q=C{\varDelta V}=(2.0\times10^{-6}F)(100V)

Q=2.0\times10^{-4}C

You might be interested in
A standing wave of the third overtone is induced in a stopped pipe, 2.5 m long. The speed of sound is The frequency of the sound
NemiM [27]

Answer:

f3 = 102 Hz

Explanation:

To find the frequency of the sound produced by the pipe you use the following formula:

f_n=\frac{nv_s}{4L}

n: number of the harmonic = 3

vs: speed of sound = 340 m/s

L: length of the pipe = 2.5 m

You replace the values of n, L and vs in order to calculate the frequency:

f_{3}=\frac{(3)(340m/s)}{4(2.5m)}=102\ Hz

hence, the frequency of the third overtone is 102 Hz

8 0
2 years ago
A car travels at a constant rate for 25 miles, going due east for one hour. Then it travels at a constant rate another 60 miles
egoroff_w [7]

60 mph east...........

6 0
1 year ago
Read 2 more answers
The diagram shows a heat engine. In which area of the diagram is unusable thermal energy detected?
Marat540 [252]
Nope, I disagree with the former answer. The answer is definitely Z. <u>W area</u> (boxed with red outline) is represented as the hot reservoir while <u>Z area</u> is the cold reservoir (boxed with blue outline). X area is the heat engine itself and Y area is the work produced from thermal energy from hot reservoir. Typically, all heat engines lose some heat to the environment (based from the second law of thermodynamics) that is symbolically illustrated by the lost energy in the cold reservoir. This lost thermal energy is basically the unusable thermal energy. The higher thermal energy lost, the less efficient your heat engine is. 
7 0
2 years ago
Read 2 more answers
A flashlight beam makes an angle of 60 degrees with the surface of the water before it enters the water. in the water what angle
alexira [117]
<h3><u>Answer</u>;</h3>

= 22°

<h3><u>Explanation</u>;</h3>
  • According to Snell's law, the ratio of the sine of the angle of incidence to the sine of the angle of refraction is a constant. The constant value is called the refractive index of the second medium with respect to the first.
  • Therefore; Sin i/Sin r = η

In this case; Angle of incidence = 90° -60° =30°, angle of refraction =? and η = 1.33

Thus;

Sin 30 / Sin r = 1.33

Sin r = Sin 30°/1.33

       = 0.3759

r = Sin^-1 0.3759

   = 22.08

   <u>≈ 22°</u>

3 0
2 years ago
. Suppose you have a device that extracts energy from ocean breakers in direct proportion to their intensity. If the device prod
slava [35]

Answer:

4.988kW

Explanation:

According to the question, energy E extracted from the ocean breaker is directly proportional to the intensity I. It can be expressed mathematically as E ∝ I

E = kI where k is the constant of proportionality.

From the formula; k = E/I

This shows that increase in energy extracted will lead to increase in its intensity and vice versa.

If the device produces 10.0 kW of power on a day when the breakers are 1.20 m high

E = 10kW and I = 1.20m

k = 10/1.20

k = 8.33kW/m

To know how much energy E that will be produced when they are 0.600 m high, we will use the same formula

k = E/I where;

k = 8.33kW/m

I = 0.600m

E = kI

E = 8.33 × 0.6

E = 4.998kW

The device will produce energy of 4.998kW when they are 0.600m high.

3 0
2 years ago
Read 2 more answers
Other questions:
  • A worker wants to turn over a uniform 1110-N rectangular crate by pulling at 53.0 ∘ on one of its vertical sides (the figure (Fi
    7·1 answer
  • A place kicker applies an average force of 2400 N to a football of .040 kg. The force is applied at an angle of 20.0 degrees fro
    10·1 answer
  • Compare the density, weight, mass, and volume of a pound of gold to a pound of iron on the surface of Earth.
    11·1 answer
  • Calculate the linear momentum per photon,energy per photon, and the energy per mole of photons for radiation of wavelength; (a)
    11·1 answer
  • A circular coil 17.0 cm in diameter and containing nine loops lies flat on the ground. The Earth's magnetic field at this locati
    7·1 answer
  • A beam of electrons is accelerated from rest through a potential difference of 0.200 kV and then passes through a thin slit. Whe
    13·1 answer
  • The dwarf planet praamzius is estimated to have a diameter of about 300km and orbits the sun at a distance of 6.4E12m . What is
    8·1 answer
  • A simple arrangement by means of which e.m.f,s. are compared is known
    8·1 answer
  • A submarine completed a 450 km training with an average speed of 50 km/h. For the first 180 km, it travelled at an average speed
    6·1 answer
  • A graph titled Distance as a Function of Time with horizontal axis time (seconds) and vertical axis distance (meters). A straigh
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!