Answer:
33.725 rpm
Explanation:
The relationship between rotational speed in radians per second and acceleration is ...

We want the rotation rate in RPM, so we need the conversion ...

Then the required rotational speed in RPM is ...

The rotation rate needs to be about 33.7 rpm to give an acceleration of 1.4g at the astronaut's feet.
Answer:
D) 42.87 m/s
Explanation:
First, find the time it takes him to land. Given in the y direction:
Δy = 60 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
60 m = (0 m/s) t + ½ (9.8 m/s²) t²
t = 3.5 s
Next, find the speed needed to travel the horizontal distance in that time. Given in the x direction:
Δx = 60 m
a = 0 m/s²
t = 3.5 s
Find: v₀
Δy = v₀ t + ½ at²
150 m = v₀ (3.5 s) + ½ (0 m/s²) (3.5 s)²
v₀ = 42.87 m/s
I think the right answer is the first one. If she stops moving her Position does not change any more-and the Graph Shows that after 6 seconds she stays at the Position of 5 m. If she Went Back to the start point the Graph would have Developed Back to 0m(decreased).