answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
son4ous [18]
2 years ago
5

You have a spring that stretches 0.070 m when a 0.10-kg block is attached to and hangs from it at position y0. Imagine that you

slowly pull down with a spring scale so the block is now at position y bottom, below the equilibrium position y0 where it was hanging at rest. The scale reading when you let go of the block is 3.0 N.
a. Where was the block when you let go? Assume y0 is the equilibrium position of the block and that "down" is a positive direction.
b. Determine the work you did stretching the spring.
Express your answer to two significant figures and include the appropriate units.
c. What was the energy of the spring-Earth system when you let go (assume that zero potential energy corresponds to the equilibrium position of the block)?
Express your answer to two significant figures and include the appropriate units.
d. How far will the block rise after you release it?
Express your answer to two significant figures and include the appropriate units.
Physics
1 answer:
olga nikolaevna [1]2 years ago
3 0

Answer:

a) Δy = 0.144 m

b) W = 0.145 J

c) Us = 0.32 J

d) ymax = 0.144 m

Explanation:

a) First let's find the spring constant using Hooke's Law

F = k*Δy   ⇒  k = F/Δy

where

F = m*g = 0.1 kg*9.81 m/s² = 0.981 N

and  Δy = 0.07 m. Hence

k = 0.981 N/0.07 m = 14.014 N/m ≈ 14 N/m

In order to find the position of the block when we let it go, we need to find the force that caused this expansion in the spring, we know that the reading of the scale was 3 N and this reading includes the force we want to find and the weight of the block, therefore:

f = 3 N - F = 3 N - 0.981 N = 2.019 N

Now that we have found the force we can use Hooke's Law in order to find the position of the block

f = k*Δy   ⇒   Δy = f/k

⇒   Δy = 2.019 N/14 N/m

⇒   Δy = 0.144 m

b) First, notice that there are two kind of potential energy: the potential energy in the spring and the potential energy due to the gravitational field:

W = ΔU

W = ΔUs + ΔUg

W = (Usf - Usi) + (Ugf - Ugi)

Notice that

Us = 0.5*k*y²

where

yf = 0.07 m + 0.144 m = 0.214 m  and

yi = 0.07 m

and we will take the zero level to be the equilibrium position where the block was hanging at rest. Hence

W = 0.5*k*(yf² - yi²) + m*g*(0 - Δy)

⇒ W = 0.5*14 N/m*((0.214 m)² - (0.07 m)²) + (0.1 kg)*(9.81 m/s²)*(0 - 0.144 m)

⇒ W = 0.145 J

c) When we let the block go the spring was stretched by

y = 0.07 m + 0.144 m = 0.214 m

Therefore:

Us = 0.5*k*y²

⇒ Us = 0.5*14 N/m*(0.214 m)²

⇒ Us = 0.32 J

d) Because the position that we pulled the block to it is considered as the amplitude for the vibrational motion that will happen after we release the block, then the maximum height the particle will reach above the equilibrium position is

ymax = Δy = 0.144 m

 

You might be interested in
Two billiard balls of equal mass move at right angles and meet at the origin of an xy coordinate system. Initially ball A is mov
frez [133]

Answer:

Speed of ball A after collision is 3.7 m/s

Speed of ball B after collision is 2 m/s

Direction of ball A after collision is towards positive x axis

Total momentum after collision is m×4·21 kgm/s

Total kinetic energy after collision is m×8·85 J

Explanation:

<h3>If we consider two balls as a system as there is no external force initial momentum of the system must be equal to the final momentum of the system</h3>

Let the mass of each ball be m kg

v_{1} be the velocity of ball A along positive x axis

v_{2} be the velocity of ball A along positive y axis

u be the velocity of ball B along positive y axis

Conservation of momentum along x axis

m×3·7 = m× v_{1}

∴  v_{1} = 3.7 m/s along positive x axis

Conservation of momentum along y axis

m×2 = m×u + m× v_{2}

2 = u +  v_{2} → equation 1

<h3>Assuming that there is no permanent deformation between the balls we can say that it is an elastic collision</h3><h3>And for an elastic collision, coefficient of restitution = 1</h3>

∴ relative velocity of approach = relative velocity of separation

-2 =  v_{2} - u → equation 2

By adding both equations 1 and 2 we get

v_{2} = 0

∴ u = 2 m/s along positive y axis

Kinetic energy before collision and after collision remains constant because it is an elastic collision

Kinetic energy = (m×2² + m×3·7²)÷2

                         = 8·85×m J

Total momentum = m×√(2² + 3·7²)

                             = m× 4·21 kgm/s

3 0
2 years ago
Force F acts between two charges, q1 and q2, separated by a distance d. If q1 is increased to twice its original value and the d
Step2247 [10]
Okay, haven't done physics in years, let's see if I remember this.

So Coulomb's Law states that F = k \frac{Q_1Q_2}{d^2} so if we double the charge on Q_1 and double the distance to (2d) we plug these into the equation to find

<span>F_{new} = k \frac{2Q_1Q_2}{(2d)^2}=k \frac{2Q_1Q_2}{4d^2} = \frac{2}{4} \cdot k \frac{Q_1Q_2}{d^2} = \frac{1}{2} \cdot F_{old}</span>

So we see the new force is exactly 1/2 of the old force so your answer should be \frac{1}{2}F if I can remember my physics correctly.

9 0
2 years ago
Read 2 more answers
If a 5.0 kg box is pulled simultaneously by a 10.0 N force and a 5.0 N force, then its acceleration must be?
kicyunya [14]

For this case we have that by definition:

F = ma

Where,

  • <em>m: mass of the object </em>
  • <em>a: acceleration of the object </em>
  • <em>F: summation of forces </em>

We have then:

F = 10 + 5\\F = 15 N

Then, by clearing the acceleration we have:

a = \frac {F} {m}

Substituting values we have:

a = \frac {15} {5}\\a = 3 \frac {m} {s ^ 2}

Answer:

The acceleration of the box is equal to:

a = 3 \frac {m} {s ^ 2}

6 0
2 years ago
A carousel that is 5.00 m in radius has a pair of 600-Hz sirens mounted on posts at opposite ends of a diameter. The carousel ro
Gelneren [198K]

Answer:

59cm

Explanation:

angular velocity = 0.8 rad/s

linear velocity = angular velocity * radius

                        =0.8rad/s * 5m

                        = 4 m/s

wavelength = (V + U)/F

where,

V is the velocity of the wave

U is the velocity of the source

F is the frequency of the source.

wavelength = (350 m/s + 4 m/s ) / 600 Hz

Wavelength = 0.59m or 59 cm

4 0
2 years ago
A projectile follows a straight-line path instead of a parabolic trajectory. Which could be the launch angle? would it be 90 or
Gnesinka [82]
<em>projectile can only follow the straight line path when it is launched upward straightly so the correct option is <u>90 degree with respect to horizontal x -axis ..:)</u></em>
7 0
1 year ago
Read 2 more answers
Other questions:
  • An object which has a mass of 70 kg is sitting on a cliff 10 m high. Calculate the object's Potential energy. Given g = 10m/s2
    11·1 answer
  • A solution is oversaturated with solute. Which could be done to decrease the oversaturation?
    13·2 answers
  • Consider a finite square-well potential well of width 3.1 ✕ 10-15 m that contains a particle of mass 1.8 GeV/c2. How deep does t
    9·1 answer
  • 2. Harry is pushing a car down a level road at 2.0 m/s with a force of 243 N. The total force
    8·1 answer
  • The A-string (440 HzHz) on a piano is 38.9 cmcm long and is clamped tightly at both ends. If the string tension is 667N, what's
    7·2 answers
  • The drawing shows a person (weight W = 588 N, L1 = 0.838 m, L2 = 0.398 m) doing push-ups. Find the normal force exerted by the f
    9·1 answer
  • Which shows the correct lens equation? The inverse of f equals the inverse of d Subscript o Baseline times the inverse of d Subs
    16·2 answers
  • Anita is comparing the accepted value for a physical property to the value she measured in the laboratory. Which characteristic
    13·2 answers
  • A group of students collected the data shown below while attempting to measure the coefficient of static friction (of course, it
    9·1 answer
  • Chris and Jamie are carrying Wayne on a horizontal stretcher. The uniform stretcher is 2.00 m long and weighs 100 N. Wayne weigh
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!