answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Strike441 [17]
2 years ago
13

A solution is oversaturated with solute. Which could be done to decrease the oversaturation?

Physics
2 answers:
Gnoma [55]2 years ago
6 0

Dilute the solution, option a


salantis [7]2 years ago
3 0
Ans: Dilute the solution

Explanation:
To decrease the over-saturation, dilute the solution. Dilution<span> is the process of decreasing the solute's concentration in the </span>solution. It is<span> usually done by mixing with more solvent. In other words, to </span>dilute<span> a </span>solution<span> means to add more solvent without the addition of more solute.</span>
You might be interested in
The coefficient of friction between the 2-lb block and the surface is μ=0.2. The block has an initial speed of Vβ =6 ft/s and is
Taya2010 [7]

Answer:

x = 0.0685 m

Explanation:

In this exercise we can use the relationship between work and energy conservation

            W = ΔEm

Where the work is

             W = F x

The energy can be found in two points

Initial. Just when the block with its spring spring touches the other spring

           Em₀ = K = ½ m v²

Final. When the system is at rest

            Em_{f} = K_{e1}b +K_{e2} = ½ k₁ x² + ½ k₂ x²

We can find strength with Newton's second law

            ∑ F = F - fr

Axis y

           N- W = 0

           N = W

The friction force has the equation

          fr = μ N

          fr = μ W

  The job

         W = (F – μ W) x

We substitute in the equation

            (F - μ W) x = ½ m v² - (½ k₁ x² + ½ k₂ x²)

           ½ x² (k₁ + k₂) + (F - μ W) x - ½ m v² = 0

We substitute values ​​and solve

           ½ x² (20 + 40) + (15 -0.2 2) x - ½ (2/32) 6² = 0

         x² 30 + 14.4 x - 1,125 = 0

        x² + 0.48 x - 0.0375 = 0

           

We solve the second degree equation

        x = [-0.48 ±√(0.48 2 + 4 0.0375)] / 2

        x = [-0.48 ± 0.617] / 2

        x₁ = 0.0685 m

        x₂ = -0.549 m

The first result results from compression of the spring and the second torque elongation.

The result of the problem is x = 0.0685 m

4 0
2 years ago
an ice skater, standing at rest, uses her hands to push off against a wall. she exerts an average force on the wall of 120 N and
natulia [17]

Answer:

The skater's speed after she stops pushing on the wall is 1.745 m/s.

Explanation:

Given that,

The average force exerted on the wall by an ice skater, F = 120 N

Time, t = 0.8 seconds

Mass of the skater, m = 55 kg

It is mentioned that the initial sped of the skater is 0 as it was at rest. The change in momentum of skater is :

\Delta p=m(v-u)\\\\\Delta p=mv

The change in momentum is equal to the impulse delivered. So,

J=\Delta p=F\times t\\\\mv=F\times t\\\\v=\dfrac{Ft}{m}\\\\v=\dfrac{120\times 0.8}{55}\\\\v=1.745\ m/s

So, the skater's speed after she stops pushing on the wall is 1.745 m/s.                      

4 0
1 year ago
an input force of 50 Newtons is applied through a distance of 10 meters to machine with mechanical advantage of 3. If the work o
gladu [14]
The output of the machine is

                                      (output work) =  (output force) x (distance)

                                        450 N-m      =  (output force) x (3 meters)

Divide each side
by  3 meters:                Output force = (450 N-m) / (3 m)

                                                           =    150 newtons .

With all the information given about the output work, we don't need
to know anything about the input work, or even the fact that we're
dealing with a machine.

It's comforting, though, to look back and notice that the output work
(450 N-m) is not more than the input work (500 N-m).  So everything
is nice and hunky-dory.
___________________________________

Well, my goodness !
I didn't even need to go through all of that.

Given:

-- The input force to the machine is 50 newtons.

-- The mechanical advantage of the machine is 3 .

That right there tells us that

-- The output force of the machine is 150 newtons.

We don't need any of the other given information.
5 0
2 years ago
A circular saw blade with radius 0.175 m starts from rest and turns in a vertical plane with a constant angular acceleration of
adelina 88 [10]

Answer:

x = 11.23  m

Explanation:

For this interesting exercise, we must use angular kinematics, linear kinematics and the relationship between angular and linear quantities.

Let's reduce to SI system units

    θ = 155 rev (2pi rad / rev) = 310π rad

    α = 2.00rev / s2 (2pi rad / 1 rev) = 4π rad / s²

Let's look for the angular velocity at the time the piece is released, with starting from rest the initial angular velocity is zero (wo = 0)

    w² = w₀² + 2 α θ  

    w =√ 2 α θ

    w = √(2 4pi 310pi)

    w = 156.45  rad / s

The relationship between angular and linear velocity

    v = w r

    v = 156.45  0.175

    v = 27.38 m / s

In this part we have the linear speed and the height that it travels to reach the floor, so with the projectile launch equations we can find the time it takes to arrive

    y = v_{oy} t - ½ g t²

As it leaves the highest point its speed is horizontal

   y = 0 - ½ g t²

   t = √ (-2y / g)

   t = √ (-2 (-0.820) /9.8)

   t = 0.41 s

With this time we calculate the horizontal distance, because the constant horizontal speed

   x = vox t

   x = 27.38 0.41

   x = 11.23  m

5 0
2 years ago
Two experiments are performed on an object to determine how much the object resists a change in its state of motion while at res
larisa86 [58]

Answer:

In the first experiment, the mass is inertial mass and in the second experiment, the mass is a gravitational mass.

Explanation:

It is given that a student performs two types of experiment to see how change in its resistance while in the state of motion and in rest.

In the first experiment, an object is pushed with a force against a horizontal surface and the speed is measured using a sensor. Here, work is done against the inertia of the object as it is pushed from rest. So the mass is inertial mass.

In the second experiment, an object is pushed or thrown upwards with a force and speed is measured. Here, the mass is gravitational mass as the work done in the second experiment is against the gravity or against the weight of the object.

5 0
2 years ago
Other questions:
  • tas watches as his uncle changes a flat tire on a car. his uncle raises the car using a machine called a jack. each time his unc
    9·2 answers
  • Marcia ran at a speed of 3.50 meters per second. How fast was she running in kilometers per hour?
    13·1 answer
  • Paul and Ivan are riding a tandem bike together. They’re moving at a speed of 5 meters/second. Paul and Ivan each have a mass of
    8·2 answers
  • A bowling ball has a mass of 5.5 kg and a radius of 12.0 cm. It is released so that
    7·1 answer
  • A 1000-kg car is slowly picking up speed as it goes around a horizontal curve whose radius is 100 m. The coefficient of static f
    13·2 answers
  • A displacement vector is 34.0 m in length and is directed 60.0° east of north. What are the components of this vector? Northward
    15·1 answer
  • A physics student stands on the rim of the canyon and drops a rock. The student measures the time for it to reach the bottom to
    6·1 answer
  • Recall that in the equilibrium position, the upward force of the spring balances the force of gravity on the weight. Use this co
    7·2 answers
  • Let v1, , vk be vectors, and suppose that a point mass of m1, , mk is located at the tip of each vector. The center of mass for
    6·1 answer
  • A rock climber’s shoe loosens a rock, and her climbing buddy at the bottom of the cliff notices that the rock takes 3.20 s to fa
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!