Answer:
Canyon is 50.176 meter deep.
Explanation:
The students is standing on the rim of the canyon and drops down a rock from the rim(cliff). We have to find what is the depth of the canyon i.e. how much below is the ground from the cliff.
Given data:
Time = t = 3.2 s
Initial velocity =
= 0 m/s
Gravitational acceleration = g = 9.8 m/s²
Height = h = ?
According to second equation of motion

As initial velocity is zero, So the first term of right hand side of above equation equal to zero

h = (0.5)(9.8)(3.2)²
h = 50.176 m
This means, the rock traveled 50.176 meters to reach the bottom of the Canyon. So, the Canyon is 50.176 meter deep.
If we assume also that the temperature of the air does not change, we can use Boyle's Law:
p₁V₁ = p₂V₂
Now, we know:
p₁ = 100kPa
V₂ = 100cm³ (the volume of the tyre)
V₁ = 120cm³ (becuse the air is contained inside the tyre AND the pump)
We can solve for p₂:
p₂ = (p₁V₁)/V₂
= (100×120)/100
= 120kPa
Therefore your answer is: 120kPa
Answer:
60*12.0= 720 = v/60 * 12.0 squared which is 1,728
Explanation:
Horizontal velocity component: Vx = V * cos(α)
A, the light generated from the headlights travels at a fixed speed relative to the road
Answer: Increase in wave frequency
Explanation:
When we talk about acoustics we are dealing with sound waves, and one of their main components along with the velocity and wavelength is the <u>frequency.</u>
In this sense, the frequency of any wave refers to how fast (or slow) a wave oscillates. For example, in the especific case of sound waves when the oscillation is faster, the frequency is higher and the pitch gets higher as well.