answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
arsen [322]
1 year ago
11

Rod AB is held in place by the cord AC. Knowing that the tension in the cord is 1350 N and that c 5 360 mm, determine the moment

about B of the force exerted by the cord at point A by resolving that force into horizontal and vertical components applied (a) at point A, (b) at point C.

Physics
1 answer:
riadik2000 [5.3K]1 year ago
6 0

Answer:

291.598 N-m

291.6 N-m

Explanation:

Let's first take a  look at the free bodily diagrammatic representation.

The first diagram will aid us in answering  question (a), so as the second diagram will facilitate effective understanding when solving for question (b).

Let's first determine our angle θ from the diagram

To find angle θ ; we have :

tan θ  = \frac{360+240}{450}

tan θ  = \frac{600}{450}

tan θ  = 1.333

θ  = tan⁻¹ (1.333)

θ  = 53.13°

Now, to determine the moment about B of the force exerted by the cord at point A by resolving that force into horizontal and vertical components applied at point A.

We have:

M__B}=(Fcos \theta *240)-(Fsin \theta *450)

where Force(F) = Force in the cord AC = 1350 N and θ  = 53.13° ; we have:

M__B}=(1350&cos 53.13^0 *240)-(1350sin 53.13^0 *450)

M__B}= 194400.463-485999.348

M__B}=-291598.885 N-mm\\

M__B}=-291.598 N-m

Since the negative sign illustrates just the clockwise movement ; then the moment about B of the force exerted by the cord at point A by resolving that force into horizontal and vertical components applied at point A = 291.598 N-m

b) From the second diagram, taking the moment at point B (M__B}),

we have:

M__B}=-Fcos \theta *360 - Fsin \theta * 0

M__B}=-Fcos \theta *360 - 0

M__B}=-Fcos \theta *360

where Force(F) =  1350 N and θ  = 53.13° ; we have:

M__B}= -1350*cos53.13^0*360

M__B}= -291600 N-mm

M__B}= -291.6 N-m

Since the negative sign illustrates just the clockwise movement ; then the moment about B of the force exerted by the cord at point A by resolving that force into horizontal and vertical components applied at point C = 291.6 N-m

You might be interested in
When carrying extra weight, the space formed between the top of your head and the two axles of the motorcycle is referred to as
Dafna11 [192]
When carrying extra weight, the space formed between the top of your head and the two axles of the motorcycle is called "load triangle". Because of a motorcycle's size and weight<span> and the fact that it has only two wheels, how to carry extra load is very important. One has to make sure that they are keeping the weight low and close to the middle of the motorcycle and keep the load evenly from side to side. Heavier items should be in the "load triangle".</span><span> </span>
3 0
2 years ago
Angelina jumps off a stool. As she is falling, the Earth’s gravitational force on her is larger in magnitude than the gravitatio
valentinak56 [21]
The answer is True. The amount force exerted by any object is directly proportional to its mass. This means that our planet is exerting more gravitational force to Angelina, and Angelina is also exerting a gravitational force on our planet directly proportional to her mass. Angelina is actually falling towards the center of the earth,and also our planet is also moving towards Angelina, but it seems negligible with respect to Angelina.Our Sun is so massive that it held our planet in its orbit because of its gravitational force.
8 0
2 years ago
Read 2 more answers
a 75 kg man is standing at rest on ice while holding a 4kg ball. if the man throws the ball at a velocity of 3.50 m/s forward, w
AysviL [449]

Answer:

His resulting velocity will be 0.187 m/s backwards.

Explanation:

Given:

Mass of the man is, M=75\ kg

Mass of the ball is, m=4\ kg

Initial velocity of the man is, u_m=0\ m/s(rest)

Initial velocity of the ball is, u_b=0\ m/s(rest)

Final velocity of the ball is, v_b=3.50\ m/s

Final velocity of the man is, v_m=?\ m/s

In order to solve this problem, we apply law of conservation of momentum.

It states that sum of initial momentum is equal to the sum of final momentum.

Momentum is the product of mass and velocity.

Initial momentum = Initial momentum of man and ball

Initial momentum = Mu_m+mu_b=75\times 0+4\times 0 =0\ Nm

Final momentum = Final momentum of man and ball

Final momentum = Mv_m+mv_b=75\times v_m+4\times 3.50 =75v_m+14

Now, initial momentum = final momentum

0=75v_m+14\\\\75v_m=-14\\\\v_m=\frac{-14}{75}\\\\v_m=-0.187\ m/s

The negative sign implies backward motion of the man.

Therefore, his resulting velocity is 0.187 m/s backwards.

3 0
2 years ago
Pions have a half-life of 1.8 x 10^-8 s. A pion beam leaves an accelerator at a speed of 0.8c. What is the expected distance ove
Nuetrik [128]

Answer:

the expected distance is 4.32 m

Explanation:

given data

half life time = 1.8 × 10^{-8} s

speed = 0.8 c = 0.8 × 3 × 10^{8}

to find out

expected distance over

solution

we know c is speed of light in air is 3 × 10^{8} m/s

we calculate expected distance by given formula that is

expected distance = half life time × speed   .........1

put here all these value

expected distance = half life time × speed

expected distance = 1.8 × 10^{-8} ×  0.8 × 3 × 10^{8}

expected distance = 4.32

so the expected distance is 4.32 m

5 0
2 years ago
A spaceship of mass 8600 kg is returning to Earth with its engine turned off. Consider only the gravitational field of Earth. Le
Katyanochek1 [597]

Answer:

\Delta KE = 4.20\times 10^{13}\ J

Explanation:

given,

mass of spaceship(m) = 8600 Kg

Mass of earth = 5.972 x 10²⁴ Kg

position of movement of space ship

R₁ = 7300 Km

R₂ = 6700 Km

the kinetic energy of the spaceship increases by = ?

Increase in Kinetic energy = decrease in potential energy

    \Delta KE = GMm (\dfrac{1}{R_2}-\dfrac{1}{R_1})

    \Delta KE = GMm (\dfrac{R_1-R_2}{R_2R_1})

    \Delta KE = 6.67 \times 10^{-11}\times 5.972 \times 10^{24}\times 8600 (\dfrac{7300 - 6700}{7300 \times 6700})

    \Delta KE = 6.67 \times 10^{-11}\times 5.972 \times 10^{24}\times 8600 (\dfrac{600}{48910000})

    \Delta KE = 4.20\times 10^{13}\ J

5 0
2 years ago
Other questions:
  • A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. f(t) = 0.01t4 − 0.0
    8·1 answer
  • Given that the internal energy of water at 28 bar pressure is 988 kJ kg–1 and that the specific volume of water at this pressure
    7·1 answer
  • 5. How much does a suitcase weigh if it has a mass of 22.5 kg?
    10·2 answers
  • A 1-m-long monopole car radio antenna operates in the AM frequency of 1.5 MHz. How muchcurrent is required to transmit 4 W of po
    9·1 answer
  • The human heart is a powerful and extremely reliable pump. Each day it takes in and discharges about 7500 L of blood. Assume tha
    6·1 answer
  • When a 100-Ω resistor is connected across the terminals of a battery of emf ε and internal resistance r, the battery delivers 0.
    9·1 answer
  • You are standing at the midpoint between two speakers, a distance D away from each. The speakers are playing the exact same soun
    7·1 answer
  • Jack and Jill are maneuvering a 3100 kg boat near a dock. Initially the boat's position is &lt; 2, 0, 3 &gt; m and its speed is
    9·1 answer
  • . 30
    6·1 answer
  • 16) A wheel of moment of inertia of 5.00 kg-m2 starts from rest and accelerates under a constant torque of 3.00 N-m for 8.00 s.
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!