We have that The ratio U1/U2 of their potential energies due to their interactions with Q is
From the question we are told that
Question 1
Charge q1 is distance r from a positive point charge Q.
Question 2
Charge q2=q1/3 is distance 2r from Q.
Charge q1 is distance s from the negative plate of a parallel-plate capacitor.
Charge q2=q1/3 is distance 2s from the negative plate.
Generally the equation for the potential energy is mathematically given as

Therefore
The Equations of U1 and U2 is
For U1

For U2

Since
U is a function of q and q2=q1/3
Therefore

For Question 2
For U1

Therefore

For more information on this visit
brainly.com/question/23379286?referrer=searchResults
Answer: Seismograph is an instrument that is used to measure the vibration of the earthquake. It is based on seismic waves. X ray is an electromagnetic energy wave that is used for CAT ( computerized axial tomography) scan.
Hence, both seismic wave and X ray are energy waves.
The velocity of seismic waves is different in different media. Similarly, X ray loses its amplitude depending upon the dense layer of the tissue.
Answer:
Final speed of the crate is 15 m/s
Explanation:
As we know that constant force F = 80 N is applied on the object for t = 12 s
Now we can use definition of force to find the speed after t = 12 s

so here we know that object is at rest initially so we have


Now for next 6 s the force decreases to ZERO linearly
so we can write the force equation as

now again by same equation we have



put t = 6 s



Magnetic flux can be calculated by the product of the magnetic field and the area that is perpendicular to the field that it penetrates. It has units of Weber or Tesla-m^2. For the first question, when there is no current in the coil, the flux would be:
ΦB = BA
A = πr^2
A = π(.1 m)^2
A = π/100 m^2
ΦB = 2.60x10^-3 T (π/100 m^2 ) ΦB = 8.17x10^-5 T-m^2 or Wb (This is only for one loop of the coil)
The inductance on the coil given the current flows in a certain direction can be calculated by the product of the total number of turns in the coil and the flux of one loop over the current passing through. We do as follows:
L = N (ΦB ) / I
L = 30 (8.17x10^-5 T-m^2) / 3.80 = 6.44x10^-4 mH