answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lozanna [386]
2 years ago
6

A ladder placed up against a wall is sliding down. The distance between the top of the ladder and the foot of the wall is decrea

sing at a rate of 9 inches per second. When this distance is 61 inches, how fast is the distance between the bottom of the ladder and the foot of the wall changing? The ladder is 152 inches long. (Do not include units in your answer, and round to the nearest hundredth.)
Physics
1 answer:
Kitty [74]2 years ago
3 0

Answer:

distance changing at rate of 3.94 inches/sec

Explanation:

Given data

wall decreasing at a rate = 9 inches per second

ladder L = 152 inches

distance  h = 61 inches

to find out

how fast is the distance changing

solution

we know that

h² + b² = L²   ..................1

h² + b² = 152²

Apply here derivative w.r.t. time

2h dh/dt + 2b db/dt = 0

h dh/dt + b db/dt = 0

db/dt = - h/b × dh/dt     .............2

and

we know

h = 61

so h² + b² = L²

61² + b² = 152²

b² = 19383

so b = 139.223

and we know dh/dt = -9 inch/sec

so from equation 2

db/dt = -61/139.223  (-9)

so

db/dt = 3.94 inches/sec

distance changing at rate of 3.94 inches/sec

You might be interested in
Which of the following four circuit diagrams best represents the experiment described in this problem?
Valentin [98]

We don't see any circuit diagrams.  

This worries us for a few seconds, until we realize that we don't know anything about the experiment described in the problem either, so we don't have to worry about it at all.

6 0
2 years ago
A physical change occurs when a material changes shape or size but the composition of the material does not change. True or Fals
Elden [556K]
It is true that a physical change occurs when a material changes shape or size, but the composition of the material does not change. The correct answer is True. 
6 0
2 years ago
A beam of monochromatic light (f =5.09 ×1014 Hz) has a wavelength of 589 nanometers in air. What is the wavelength of this light
frosja888 [35]
Lucite has a refractive index of n=1.50. This means that the speed of the light in lucite is decreased according to:
v=\frac{c}{n}
where c=3 \cdot 10^8 m/s is the speed of light in air. Putting the number in the formula, we find that the speed of light in lucite is
v=\frac{3 \cdot 10^8 m/s}{1.50}=2\cdot 10^8 m/s
The frequency of the light is f=5.09 \cdot 10^{14}Hz, so now we can calculate the wavelength in lucite by using the formula:
\lambda=\frac{v}{f}=\frac{2\cdot 10^8 m/s}{5.09 \cdot 10^{14} Hz}=3.93 \cdot 10^{-7} m=393 nm
<span>Therefore, the correct answer is (2) 393 nm.</span>
7 0
2 years ago
This is really urgent
hodyreva [135]

20) When light passes from air to glass and then to air

21) When a light ray enters a medium with higher optical density, it bends towards the normal

22) Index of refraction describes the optical density

23) Light travels faster in the material with index 1.1

24) Glass refracts light more than water

25) Index of refraction is n=\frac{c}{v}

26) Critical angle: [tex]sin \theta_c = \frac{n_2}{n_1}[/tex]

27) Critical angle is larger for the glass-water interface

Explanation:

20)

It is possible to slow down light and then speed it up again by making light passing from a medium with low optical density (for example, air) into a medium with higher optical density (for example, glass), and then make the light passing again from glass to air.

This phenomenon is known as refraction: when a light wave crosses the interface between two different mediums, it changes speed (and also direction). The speed decreases if the light passes from a medium at lower optical density to a medium with higher optical density, and viceversa.

21)

The change in direction of light when it passes through the boundary between two mediums is given by Snell's law:

n_1 sin \theta_1 = n_2 sin \theta_2

with

n_1, n_2 are the refractive index of 1st and 2nd medium

\theta_1, \theta_2 are the angle of incidence and refraction (the angle between the incident ray (or refracted ray) and the normal to the boundary)

The larger the optical density of the medium, the larger the value of n, the smaller the angle: so, when a light ray enters a medium with higher optical density, it bends towards the normal.

22)

The index of refraction describes the optical density of a medium. More in detail:

  • A high index of refraction means that the material has a high optical density, which means that light travels more slowly into that medium
  • A low index of refraction means that the material has a low optical density, which means that light travels faster into that medium

Be careful that optical density is a completely different property from density.

23)

As we said in part 22), the index of refraction describes the optical density of a medium.

In this case, we have:

  • A material with refractive index of 1.1
  • A material with refractive index of 2.2

As we said previously, light travels faster in materials with a lower refractive index: therefore in this case, light travels more quickly in material 1, which has a refractive index of only 1.1, than material 2, whose index of refraction is much higher (2.2).

24)

Rewriting Snell's law,

sin \theta_2 = \frac{n_1}{n_2}sin \theta_1 (1)

For light moving from air to water:

n_1 \sim 1.00 is the index of refraction of air

n_2 = 1.33 is the index of refraction ofwater

In this case, \frac{n_1}{n_2}=\frac{1.00}{1.33}=0.75

For light moving from air to glass,

n_2 = 1.51 is the index of refraction of glass

And so

\frac{n_1}{n_2}=\frac{1.00}{1.51}=0.66

From eq.(1), we see that the angle of refraction \theta_2 is smaller in the 2nd case: so glass refracts light more than water, because of its higher index of refraction.

25)

The index of refraction of a material is

n=\frac{c}{v}

c is the speed of light in a vacuum

v is the speed of light in the material

So, the index of refraction is inversely proportional to the speed of light in the material:

  • The higher the index of refraction, the slower the light
  • The lower the index of refraction, the faster the light

26)

From Snell's law,

sin \theta_2 = \frac{n_1}{n_2}sin \theta_1

We notice that when light moves from a medium with higher refractive index to a medium with lower refractive index, n_1 > n_2, so \frac{n_1}{n_2}>1, and since sin \theta_2 cannot be larger than 1, there exists a maximum value of the angle of incidence \theta_c (called critical angle) above which refraction no longer occurs: in this case, the incident light ray is completely reflected into the original medium 1, and this phenomenon is called total internal reflection.

The value of the critical angle is given by

sin \theta_c = \frac{n_2}{n_1}

For angles of incidence above this value, total internal reflection occurs.

27)

Using:

sin \theta_c = \frac{n_2}{n_1}

For the interface glass-air,

n_1 \sim 1.51\\n_2 = 1.00

The critical angle is

\theta_c = sin^{-1}(\frac{n_2}{n_1})=sin^{-1}(\frac{1.00}{1.51})=41.5^{\circ}

For the interface glass-water,

n_1 \sim 1.51\\n_2 = 1.33

The critical angle is

\theta_c = sin^{-1}(\frac{n_2}{n_1})=sin^{-1}(\frac{1.33}{1.51})=61.7^{\circ}

So, the critical angle is larger for the glass-water interface.

Learn more about refraction:

brainly.com/question/3183125

brainly.com/question/12370040

#LearnwithBrainly

7 0
2 years ago
It has been proposed that extending a long conducting wire from a spacecraft (a "tether") could be used for a variety of applica
denis23 [38]

Complete Question

The complete question is shown on the first uploaded image

Answer:

The angle between shuttle's velocity and the Earth's field is  \theta =   24.2^o

Explanation:

From the question we are told that

     The length of eire let out is  L = 250 \ m

      The emf generated is \epsilon = 40 V

      The earth magnetic field is B = 5.0 *10^{-5} T

     The speed of the shuttle and tether is v =  7.80 * 10^3 \  m/s

The emf generated is mathematically represented as

                             \epsilon = L\ v\ B\ sin \ \theta

making \theta  the subject of the formula

                        \theta =   sin ^{-1}[ \frac{\epsilon}{L  * B  *v} ]

substituting values

                        \theta =   sin ^{-1}[ \frac{40}{250  * (5*10^{-5})  *(7.80 *10^{3})} ]

                        \theta =   24.2^o

6 0
2 years ago
Other questions:
  • In a harbor, you can see sea waves traveling around the edges of small stationary boats. Why does this happen?
    7·1 answer
  • Julius competes in the hammer throw event. The hammer has a mass of 7.26 kg and is 1.215 m long. What is the centripetal force o
    15·2 answers
  • An 80.0-kg object is falling and experiences a drag force due to air resistance. The magnitude of this drag force depends on its
    12·1 answer
  • A 1 200-kg car traveling initially at vCi 5 25.0 m/s in an easterly direction crashes into the back of a 9 000-kg truck moving i
    14·1 answer
  • Select True or False for the following statements about Heisenberg's Uncertainty Principle. True False It is not possible to mea
    5·1 answer
  • A burglar drops a bag of loot fr a window hotel. The bag takes 0.15s to pass the 1.6m tall window of your room as it falls towar
    13·1 answer
  • A transformer is to be designed to increase the 30 kV-rms output of a generator to the transmission-line voltage of 345 kV-rms.
    8·1 answer
  • Sharks are generally negatively buoyant; the upward buoyant force is less than the weight force. This is one reason sharks tend
    15·1 answer
  • Bullets from two revolvers are fired with the same velocity. The bullet from gun #1 is twice as heavy as the bullet from gun #2.
    6·1 answer
  • Consider the following:
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!