answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergij07 [2.7K]
2 years ago
11

A 4 kg box is on a frictionless 35° slope and is connected via a massless string over a massless, frictionless pulley to a hangi

ng 2 kg weight, (a) What is the tension in the string if the 4 kg box is held in place, so that it cannot move? (b) If the box is then released, which way will it move on the slope? (c) What is the tension in the string once the box begins to move?
Physics
2 answers:
Anarel [89]2 years ago
7 0

Answer:

(a) 19.62 N

(b) Box moves down the slope

(c) 24.43 N

Explanation:

(a)  

2 Kg box  causes tension

T=mgwhere m is mass, g is gravitational force taken as 9.81T=2*9.81 =19.62 N  (b)  Block mass of 4 Kg  [tex]T'-mg sin \theta=0 hence T'=mg sin \theta where m is mass and g is gravitational force  

T'=4*9.81 sin 35= 22.5071 N  

Since T' is greater than mg sin\theta , then the box moves down the slope  

(c)  

Acceleration a= \frac {forward   force-backward   force}{Total mass}= \frac {mg sin \theta -mg}{m1 + m2}  

a= \frac {22.51-19.62}{2+4}=0.48

When moving, the box will exert force T"= mgsin \theta + ma  

T"= 4*9.81 sin 35 +(4*0.48)= 24.43 N

DENIUS [597]2 years ago
4 0

Answer:

(a). The tension in the string if the 4 kg box held in place is 22.48 N.

(b). The 4 kg box moves on downward.

(c). The tension in the string once the box begins to move is 24.4 N.

Explanation:

Given that,

Mass of box m₁ =4 kg

Mass of second box m₂= 2 kg

Angle = 35°

(a). We need to calculate the tension in the string if the 4 kg box is held in place, so that it cannot move

Using formula of tension

T=mg\sin\theta

Put the value into the formula

T=4\times9.8\times\sin35

T=22.48\ N

(b). If the box is then released, which way will it move on the slope

We need to calculate the tension for block of mass 2 kg

T'=mg

put the value into the formula

T'=2\times9.8

T'=19.6\ N

Here, T > T'

So, the first block moves on downward.

(c). We need to calculate the acceleration

Using formula of acceleration

a =\dfrac{forward\ force-bacward\ force}{total\ mass}

a=\dfrac{T-T'}{M}

Put the value into the formula

a=\dfrac{22.48-19.6}{6}

a=0.48\ m/s^2

We need to calculate the tension in the string once the box begins to move

For mass 4 kg

Using balance equation

T-T''=ma

T''=T+ma

Put the value into the formula

T''=22.48+4\times0.47

T''=24.4\ N

Hence, (a). The tension in the string if the 4 kg box held in place is 22.48 N.

(b). The 4 kg box moves on downward.

(c). The tension in the string once the box begins to move is 24.4 N.

You might be interested in
A child is sliding a toy block (with mass = m) down a ramp. The coefficient of static friction between the block and the ramp is
tiny-mole [99]

Answer:

F=mg(sin(\theta )-0.25 cos(\theta ))

Explanation:

The free body diagram of the block on the slide is shown in the below figure

Since the block is in equilibrium we apply equations of statics to compute the necessary unknown forces

N is the reaction force between the block and the slide

For equilibrium along x-axis we have

\sum F_{x}=0\\\\mgsin(\theta )-\mu N-F=0\\\therefore F=mgsin(\theta)-\mu N......(\alpha )\\Similarly\\\sum F_{y}=0\\\\N-mgcos(\theta )=0\\\therefore N=mgcos(\theta ).......(\beta )\\\\

Using value of N from equation β in α we get value of force as

F=mg(sin(\theta )-\mu cos(\theta ))

Applying values we get

F=mg(sin(\theta )-0.25 cos(\theta ))

8 0
2 years ago
Read 2 more answers
a student drew the following model: volcano cooling crust motion plates tension which landform should the student put next in th
Andrei [34K]

Answer:

C) rift valley

Explanation:

A rift valley is a lowland region formed by the interaction of Earth's tectonic plates. This small rift valley has a typical formation—long, narrow, and deep. It was formed by the Thingvellir rift, where the North American and Eurasian tectonic plates are tearing, or rifting, apart over a hotspot on the island of Iceland.

3 0
2 years ago
Read 2 more answers
The plug has a diameter of 30 mm and fits within a rigid sleeve having an inner diameter of 32 mm. Both the plug and the sleeve
Katena32 [7]

Answer:

P=740 KPa

Δ=7.4 mm

Explanation:

Given that

Diameter of plunger,d=30 mm

Diameter of sleeve ,D=32 mm

Length .L=50 mm

E= 5 MPa

n=0.45

As we know that

Lateral strain

\varepsilon _t=\dfrac{D-d}{d}

\varepsilon _t=\dfrac{32-30}{30}

\varepsilon _t=0.0667

We know that

n=-\dfrac{\epsilon _t}{\varepsilon _{long}}

\varepsilon _{long}=-\dfrac{\epsilon _t}{n}

\varepsilon _{long}=-\dfrac{0.0667}{0.45}

\varepsilon _{long}=-0.148

So the axial pressure

P=E\times \varepsilon _{long}

P=5\times 0.148

P=740 KPa

The movement in the sleeve

\Delta =\varepsilon _{long}\times L

\Delta =0.148\times 50

Δ=7.4 mm

6 0
2 years ago
A steel rod with a length of l = 1.55 m and a cross section of A = 4.45 cm2 is held fixed at the end points of the rod. What is
Blababa [14]

To solve this problem it is necessary to apply the concepts related to thermal stress. Said stress is defined as the amount of deformation caused by the change in temperature, based on the parameters of the coefficient of thermal expansion of the material, Young's module and the Area or area of the area.

F = AY\alpha \Delta T

Where

A = Cross-sectional Area

Y = Young's modulus

\alpha= Coefficient of linear expansion for steel

\Delta T= Temperature Raise

Our values are given as,

A = 4.45cm^2

T = 37K

\alpha = 1.17*10^{-5}K^{-1}

Y = 200*10^9Gpa

Replacing we have,

F = (4.45*10^{-4})(200*10^9)(1.17*10^{-5})(37)

F = 38526.1N

Therefore the size of the force developing inside the steel rod when its temperature is raised by 37K is 38526.1N

7 0
2 years ago
In the sport of curling, large smooth stones are slid across an ice court to land on a target. Sometimes the stones need to move
lara31 [8.8K]

Answer:

To increase kinetic friction, the amount of fine water droplets sprayed before the game is limited.

To reduce kinetic friction. increase the amount of fine water droplets during pregame preparation and sweeping in front of the curling stones.

Explanation:

In curling sports, since the ice sheets are flat, the friction on the stone would be too high and the large smooth stone would not travel half as far. Thus controlling the amount of fine water droplets sprayed before the game is limited pregame is necessary to increase friction.

On the other hand, reducing ice kinetic friction involves two ways. The first way is adding bumps to the ice which is known as pebbling. Fine water droplets are sprayed onto the flat ice surface. These droplets freeze into small "pebbles", which the curling stones "ride" on as they slide down the ice. This increases contact pressure which lowers the friction of the stone with the ice. As a result, the stones travel farther, and curl less.  

The second way to reduce the kinetic friction is sweeping in front of the large smooth stone. The sweeping action quickly heats and melts the pebbles on the ice leaving a film of water. This film reduces the friction between the stone and ice.

8 0
2 years ago
Other questions:
  • a truss is made by hinging two uniform, 150-N rafters as shown in Fig. 5-21. They rest on an essentially frictionless floor and
    6·1 answer
  • myron is almost late for class and he is running quickly to arrive before the professor begins lecturing as he listen to the pro
    11·1 answer
  • A normal polarity magnet moves toward a stationary coil at 20 cm/s, and induces a maximum current of –8 mA. Which scenarios woul
    11·2 answers
  • You are designing a generator with a maximum emf 8.0 V. If the generator coil has 200 turns and a cross-sectional area of 0.030
    11·2 answers
  • A 18.0−μF capacitor is placed across a 22.5−V battery for a few seconds and is then connected across a 12.0−mH inductor that has
    13·1 answer
  • Suppose you have a pendulum clock which keeps correct time on Earth(acceleration due to gravity = 1.6 m/s2). For ever hour inter
    8·1 answer
  • A proton initially moves left to right along the x-axis at a speed of 2.00 x 103 m/s. It moves into an uniform electric field, w
    7·1 answer
  • You are in a spacecraft moving at a constant velocity. The front thruster rocket fires incorrectly, causing the craft to slow do
    5·1 answer
  • Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 20.0 m above water wit
    8·1 answer
  • The solar energy strikes the deck at the rate of 1400 W on every square metre.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!