
Actually Welcome to the Concept of the Force and Power.
Since, according to the Newton's law,
Force = mass * Acceleration.
hence, here
Force = 142 N, accelration = 22.75 m/s2
hence, mass = 142/22.75
===> Mass = 6.24 Kg
hence the mass of the shot is 6.24 Kg
Answer:
<h2>
The potential difference increases </h2>
Explanation:
from the relation 
where E= electric field (force per coulomb)
V= voltage
d= distance
Hence the voltage is going to be V= E×d.
Therefore this means that increasing the distance increases the voltage.
Answer:
Jari
Explanation:
The question requires to know who is traveling faster. This is done by comparing the gradients. The steeper the slope (high gradient), the faster the speed and vice versa.
From Jari's line, the starting point is (0, 0) and another point is (6, 7)
The gradient being change in y to change in x
Change in y=7-0=7
Change in x=6-0=6
Slope is 7/6
For Jade, first point is (0, 10) then another point is (6, 16)
Change in y=16-10=6
Change in x=6-0=6
Slope is 6/6=1
Clearly, 7/6 is greater than 6/6 or 1 hence Jari is faster than Jade
I think it might be heat energy. light transforms into heat energy
The correct answer is <span>3)

.
</span>
In fact, the total energy of the rock when it <span>leaves the thrower's hand is the sum of the gravitational potential energy U and of the initial kinetic energy K:
</span>

<span>As the rock falls down, its height h from the ground decreases, eventually reaching zero just before hitting the ground. This means that U, the potential energy just before hitting the ground, is zero, and the total final energy is just kinetic energy:
</span>

<span>
But for the law of conservation of energy, the total final energy must be equal to the tinitial energy, so E is always the same. Therefore, the final kinetic energy must be
</span>

<span>
</span>