answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IrinaVladis [17]
2 years ago
15

Io, a satellite of Jupiter, is the most volcanically active moon or planet in the solar system. It has volcanoes that send plume

s of matter over 500 km high. Due to the satellite's small mass, the acceleration due to gravity on Io is only 1.81 m/s2, and Io has no appreciable atmosphere. Assume that there is no variation in gravity over the distance traveled. Part A What must be the speed of material just as it leaves the volcano to reach an altitude of 490 km
Physics
2 answers:
svetlana [45]2 years ago
4 0

Answer:

1.33 km/s

Explanation:

acceleration due to gravity, g = 1.81 m/s²

height, h = 490 km = 490000 m

Let u is the initial speed and the final speed is zero.

use third equation of motion

v² = u² - 2 g h

0 = u² - 2 x 1.81 x 490000

u² = 1773800

u = 1331.84 m/s

u = 1.33 km/s

Thus, the initial speed of the material is 1.33 km/s.

Mamont248 [21]2 years ago
3 0

Answer:

1331.84 m/s

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity = 0

s = Displacement = 490 km

a = Acceleration

g = Acceleration due to gravity = 1.81 m/s² = a

From equation of linear motion

v^2-u^2=2as\\\Rightarrow -u^2=2as-v^2\\\Rightarrow u=\sqrt{v^2-2as}\\\Rightarrow u=\sqrt{0^2-2\times -1.81\times 490000}\\\Rightarrow u=1331.84\ m/s

The speed of the material must be 1331.84 m/s in order to reach the height of 490 km

You might be interested in
At 213.1 K a substance has a vapor pressure of 45.77 mmHg. At 243.7 K it has a vapor pressure of 193.1 mm Hg. Calculate its heat
vlabodo [156]

Answer:

20.3125 kJ/mol

Explanation:

P_{i} = initial vapor pressure = 45.77 mm Hg

P_{f} = final vapor pressure = 193.1 mm Hg

T_{i} = initial temperature = 213.1 K

T_{f} = final temperature = 243.7 K

H = Heat of vaporization

Using the equation

ln\left ( \frac{P_{f}}{P_{i}} \right ) = \left ( \frac{-H}{R} \right )\left ( \frac{1}{T_{f}} - \frac{1}{T_{i}}\right)

ln\left ( \frac{193.1}{45.77} \right ) = \left ( \frac{-H}{8.314} \right )\left ( \frac{1}{243.7} - \frac{1}{213.1}\right)

H = 20312.5 J/mol

H = 20.3125 kJ/mol

8 0
2 years ago
a bus is moving at 22m/s [E] for 12s. Then the bus driver slows down at 1.2m/s2 [W] until the bus stops. Determine the total dis
KatRina [158]
The total displacement is equal to the total distance. For the east or E direction, the distance is determined using the equation:

d = vt = (22 m/s)(12 s) = 264 m

For the west or W direction, we use the equations:
a = (v - v₀)/t
d = v₀t + 0.5at²

Because the object slows down, the acceleration is negative. So,
-1.2 m/s² = (0 m/s - 22 m/s)/t
t = 18.33 seconds
d = (22 m/s)(18.33 s) + 0.5(-1.2 m/s²)(18.33 s)²
d = 201.67 m

Thus,
Total Displacement = 264 m +  201.67 m = 465.67 or  approximately 4.7×10² m.
7 0
1 year ago
The box leaves position x=0x=0 with speed v0v0. The box is slowed by a constant frictional force until it comes to rest at posit
const2013 [10]

Answer:

fr = ½ m v₀²/x

Explanation:

This exercise the body must be on a ramp so that a component of the weight is counteracted by the friction force.

The best way to solve this exercise is to use the energy work theorem

            W = ΔK

Where work is defined as the product of force by distance

           W = fr x cos 180

The angle is because the friction force opposes the movement

          Δk =K_{f} –K₀

          ΔK = 0 - ½ m v₀²

We substitute

         - fr x = - ½ m v₀²      

           fr = ½ m v₀²/x

8 0
2 years ago
A rubber ball with a mass 0.20 kg is dropped vertically from a height of 1.5 m above the floor. The ball bounces off of the floo
Digiron [165]
Potential Energy = mass * Hight * acceleration of gravity
PE=hmg
PE = 1.5 * .2 * 9.81
PE = 2.943
it lost .6 so 2.943 - .6 = 2.343
now your new energy is 2.343 so solve for height
2.343 = mhg
2.334 = .2 * h * 9.81
h = 1.194
the ball after the bounce only went up 1.194m
8 0
2 years ago
Someone fires a 0.04 kg bullet at a block of wood that has a mass of 0.5 kg. (The block of wood is sitting on a frictionless sur
d1i1m1o1n [39]

Answer:

The speed of bullet and wooden bock coupled together, V = 22.22 m/s

Explanation:

Given that,

Mass of the bullet, m = 0.04 Kg

Mass of the wooden block, M = 0.5 Kg

The initial velocity of the bullet, u = 300 m/s

The initial velocity of the wooden block, U = 0 m/s

The final velocity of the bullet and wooden bock coupled together, V = 0 m/s

According to the conservation of linear momentum, the total momentum of the body after impact is equal to the total momentum before impact.

Therefore,

                              mV + MV = mu + MU

                               V(m+M) = mu

                                 V = mu/(m+M)

Substituting the values in the above equation,

                                V = 0.04 Kg x 300 m/s  / (0.04 Kg+ 0.5 Kg)

                                    = 22.22 m/s

Hence, the speed of bullet and wooden bock coupled together, V = 22.22 m/s

8 0
2 years ago
Other questions:
  • While looking at bromine (Br) on the periodic table, a student needs to find another element with very similar chemical properti
    13·2 answers
  • your drop a coin from the top of a hundred-story building(1000m). If you ignore air resistance, how fast will it be falling righ
    8·2 answers
  • if you apply a Force of F1 to area A1 on one side of a hydraulic jack, and the second side of the jack has an area that is twice
    7·1 answer
  • Which combination of units can be used to express the magnetic field?
    13·1 answer
  • At room temperature, an oxygen molecule, with mass of 5.31x10-26kg , typically has a kinetic energy of about 6.21x10-21J.How fas
    15·1 answer
  • Two spheres of mass M and 2M float in space in the absence of external gravitational forces, as shown in the figure. Which of th
    5·1 answer
  • A vertical wire carries current in the upward direction. An electron is traveling parallel to the wire. What is the angle ααalph
    13·1 answer
  • If I0 is the intensity of the unpolarized light incident on the first polarizer, and I1 and I2 denote the intensity of the light
    14·1 answer
  • A farmer lifts his hay bales into the top loft of his barn by walking his horse forward with a constant velocity of 8 ft/s. Dete
    5·1 answer
  • A pendulum makes 50 complete swings in 2 min 40 s.<br> What is the time period for 1 complete swing?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!