Answer:
2n t = m λ₀
, R = 0.240 mm
Explanation:
The interference by regency in thin films uses two rays mainly the one reflected on the surface and the one reflected on the inside of the film.
The ray that is reflected in the upper part of the film has a phase change of 180º since the ray stops from a medium with a low refractive index to one with a higher regrading index,
-This phase change is the introduction of a λ/2 change
-The ray passing through the film has a change in wavelength due to the refractive index of the medium
λ₀ = λ / n
Therefore Taking into account this fact the destructive interference expression introduces an integer phase change, then the extra distance 2t is
2 t = (m’+ ½ + ½) λ₀ / n
2t = (m’+1) λ₀ / n
m = m’+ 1
2n t = m λ₀
With m = 0, 1, 2, ...
Where t is the thickness of the film, n the refractive index of the medium, λ the wavelength
The thickness of a hair is the thickness of the film t
2R = t
R = t / 2
R = 0480/2
R = 0.240 mm
Answer: The paper airplane will create a curved path towards the floor as it is pulled toward <u><em>Earth's center.</em></u>
Explanation: The paper airplane will be pulled to the center because <u><em>Earth has a much greater mass than objects on its surface.</em></u> And it will curve because of the amount of <u><em>force</em></u> you are putting onto the plane.
<span>D) The sun's rays will never be directly overhead. The latitude of 23 ½ degrees north is known as the Tropic of Cancer. Above this imaginary line the sun's rays hit earth with decreased angles.</span>
Answer:
37357 sec
or 622 min
or 10.4 hrs
Explanation:
GIVEN DATA:
Lifting weight 80 kg
1 cal = 4184 J
from information given in question we have
one lb fat consist of 3500 calories = 3500 x 4184 J
= 14.644 x 10^6 J
Energy burns in 1 lift = m g h
= 80 x 9.8 x 1 = 784 J
lifts required 
= 18679
from the question,
1 lift in 2 sec.
so, total time = 18679 x 2 = 37357 sec
or 622 min
or 10.4 hrs
The random variable in this experiment is a Continuous random variable.
Option D
<u>Explanation</u>:
The continuous random variable is random variable where the data can take infinite variables. For example random variable is taken for measuring "speed of automobiles" on the highways. The radar instrument depicts time taken by automobile in particular what speed. They are the generalization of discrete random variables not the real numbers as a random data is created. It gives infinite sets of all possible outcomes. It is obvious that outcomes of the instrument depend on some "physical variables" those are not predictable as depends on the situation.