answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
balu736 [363]
1 year ago
10

When working with a razor blade or exacto knife --

Physics
1 answer:
stich3 [128]1 year ago
6 0

Answer:

last answer

Explanation:

gripping it with the blade facing downward is the most efficient and safe way to use an exacto knife

You might be interested in
The amount of light that undergoes reflection or transmission is demonstrated by how bright the reflected or transmitted ray is.
melamori03 [73]
If you subscribe I’ll answer QF Aotrx
8 0
2 years ago
If the angle of elevation of the cannon is decreased from 35 to 30 degrees, the vertical component of the ball's initial velocit
stealth61 [152]

Answer:

Determine the initial horizontal and vertical velocity for a dart launched with a ... an angle of 30 degrees. Vi=4m/s Vix Vicoso Mas cos 30 = = 30°. Viy=visine ... What is the resultant direction (angle) of the cannon ball (relative to a fixed frame)? ... Which of the following launch angles would result in the greatest time of flight iſ the.

Explanation:

I hope it helped

4 0
1 year ago
During a compaction test in the lab a cylindrical mold with a diameter of 4in and a height of 4.58in was filled. The compacted s
Ray Of Light [21]

Answer:

part a : <em>The dry unit weight is 0.0616  </em>lb/in^3<em />

part b : <em>The void ratio is 0.77</em>

part c :  <em>Degree of Saturation is 0.43</em>

part d : <em>Additional water (in lb) needed to achieve 100% saturation in the soil sample is 0.72 lb</em>

Explanation:

Part a

Dry Unit Weight

The dry unit weight is given as

\gamma_{d}=\frac{\gamma}{1+\frac{w}{100}}

Here

  • \gamma_d is the dry unit weight which is to be calculated
  • γ is the bulk unit weight given as

                                              \gamma =weight/Volume \\\gamma= 4 lb / \pi r^2 h\\\gamma= 4 lb / \pi (4/2)^2 \times 4.58\\\gamma= 4 lb / 57.55\\\gamma= 0.069 lb/in^3

  • w is the moisture content in percentage, given as 12%

Substituting values

                                              \gamma_{d}=\frac{\gamma}{1+\frac{w}{100}}\\\gamma_{d}=\frac{0.069}{1+\frac{12}{100}} \\\gamma_{d}=\frac{0.069}{1.12}\\\gamma_{d}=0.0616 lb/in^3

<em>The dry unit weight is 0.0616  </em>lb/in^3<em />

Part b

Void Ratio

The void ratio is given as

                                                e=\frac{G_s \gamma_w}{\gamma_d} -1

Here

  • e is the void ratio which is to be calculated
  • \gamma_d is the dry unit weight which is calculated in part a
  • \gamma_w is the water unit weight which is 62.4 lb/ft^3 or 0.04 lb/in^3
  • G is the specific gravity which is given as 2.72

Substituting values

                                              e=\frac{G_s \gamma_w}{\gamma_d} -1\\e=\frac{2.72 \times 0.04}{0.0616} -1\\e=1.766 -1\\e=0.766

<em>The void ratio is 0.77</em>

Part c

Degree of Saturation

Degree of Saturation is given as

S=\frac{G w}{e}

Here

  • e is the void ratio which is calculated in part b
  • G is the specific gravity which is given as 2.72
  • w is the moisture content in percentage, given as 12% or 0.12 in fraction

Substituting values

                                      S=\frac{G w}{e}\\S=\frac{2.72 \times .12}{0.766}\\S=0.4261

<em>Degree of Saturation is 0.43</em>

Part d

Additional Water needed

For this firstly the zero air unit weight with 100% Saturation is calculated and the value is further manipulated accordingly. Zero air unit weight is given as

\gamma_{zav}=\frac{\gamma_w}{w+\frac{1}{G}}

Here

  • \gamma_{zav} is  the zero air unit weight which is to be calculated
  • \gamma_w is the water unit weight which is 62.4 lb/ft^3 or 0.04 lb/in^3
  • G is the specific gravity which is given as 2.72
  • w is the moisture content in percentage, given as 12% or 0.12 in fraction

                                      \gamma_{zav}=\frac{\gamma_w}{w+\frac{1}{G}}\\\gamma_{zav}=\frac{0.04}{0.12+\frac{1}{2.72}}\\\gamma_{zav}=\frac{0.04}{0.4876}\\\gamma_{zav}=0.08202 lb/in^3\\

Now as the volume is known, the the overall weight is given as

weight=\gamma_{zav} \times V\\weight=0.08202 \times 57.55\\weight=4.72 lb

As weight of initial bulk is already given as 4 lb so additional water required is 0.72 lb.

4 0
1 year ago
A metallic sphere of radius 2.0 cm is charged with +5.0-μC+5.0-μC charge, which spreads on the surface of the sphere uniformly.
sladkih [1.3K]

Answer:

Explanation:

Potential due to a charged metallic sphere having charge Q and radius r on its surface will be

v = k Q / r . On the surface and inside the metallic sphere , potential is the same . Outside the sphere , at a distance R from the centre  potential is

v = k Q / R

a ) On the surface of the shell , potential due to positive charge is

V₁ = \frac{9\times10^9\times5\times10^{-6}}{6\times10^{-2}}

On the surface of the shell , potential due to negative  charge is

V₁ = \frac{- 9\times10^9\times5\times10^{-6}}{6\times10^{-2}}

Total potential will be zero . they will cancel each other.

b ) On the surface of the sphere potential

= \frac{9\times10^9\times5\times10^{-6}}{2\times10^{-2}}

= 22.5 x 10⁵ V

On the surface of the sphere potential due to outer shell

= \frac{9\times10^9\times5\times10^{-6}}{5\times10^{-2}}

= -9 x 10⁵

Total potential

=( 22.5 - 9 ) x 10⁵

= 13.5 x 10⁵ V

c ) In the space between the two , potential will depend upon the distance of the point from the common centre .

d ) Inside the sphere , potential will be same as that on the surface that is

13.5 x 10⁵ V.

e ) Outside the shell , potential due to both positive and negative charge will cancel each other so it will be zero.

5 0
1 year ago
When a resistor with resistance R is connected to a 1.50-V flashlight battery, the resistor consumes 0.0625 W of electrical powe
ch4aika [34]

Answer:

4.41 W

Explanation:

P = IV, V = IR

P = V² / R

Given that P = 0.0625 when V = 1.50:

0.0625 = (1.50)² / R

R = 36

So the resistor is 36Ω.

When the voltage is 12.6, the power consumption is:

P = (12.6)² / 36

P = 4.41

So the power consumption is 4.41 W.

5 0
1 year ago
Other questions:
  • The Gaia hypothesis is an example of _____
    8·1 answer
  • A crane with output power of 200W will lift a 600N object a vertical distance of 4.0 meters in seconds
    10·1 answer
  • An application of this principle is that a line mounted on transparent slide casts the same diffraction pattern as a dark film w
    12·1 answer
  • If an electron is accelerated from rest through a potential difference of 9.9 kV, what is its resulting speed?
    12·1 answer
  • A brass lid screws tightly onto a glass jar at 20 degrees C. To help open the jar, it can be placed into a bath of hot water. Af
    9·1 answer
  • A particular string resonates in four loops at a frequency of 320 Hz . Name at least three other (smaller) frequencies at which
    6·1 answer
  • In a study, the data you collect is Habits on a Always/Sometimes/Never scale.What is the level of measurement?
    15·1 answer
  • True of False: All body parts and organs
    13·1 answer
  • Arrange an 8-, 12-, and 16-Ω resistor in a combination that has a total resistance of 8.89 Ω pls with de work
    8·1 answer
  • A substance occupies one half of an open container. The atoms of the substance are closely packed but are still able to slide pa
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!