Refer to the diagram shown below.
i = the current in the circuit., A
R₁ = the internal resistance of the battery, Ω
R₂ = the resistance of the 60 W load, Ω
Because the resistance across the battery is 8.5 V instead of 9.0 V, therefore
(R₁ )(i A) = 9 - 8.5 = (0.5 V)
R₁*i = 0.5 (10
Also,
R₂*i = 9.5 (2)
Because the power dissipated by R₂ is 60 W, therefore
i²R₂ = 60
From (2), obtain
i*9.5 = 60
i = 6.3158 A
From (1), obtain
6.3158*R₁ = 0.5
R₁ = 0.5/6.3158 = 0.0792 Ω = 0.08 Ω (nearest hundredth)
Answer: 0.08 Ω
Answer:
W = 9533.09 Watt
Explanation:
given,
diameter of pipe inlet, d₁ = 10 cm
r₁ = 5 cm
diameter of pipe outlet, d₂ = 15 cm
r₂= 7.5 cm
head upto water level is to rise = 60 + 5
= 65 m
flow rate = 0.015 m³/s
we know
A₁ v₁ = A₂ v₂ = Q
π r₁² v₁ = π r₂² v₂ = 0.015


v₂ = 0.848 m/s
v₁ = 1.908 m/s
Applying Bernoulli's equation
P_p is the pump pressure
Power of the pump
W = P_p x Q
W = 635539.32 x 0.015
W = 9533.09 Watt
Answer:
The correct dose = 1454.54 mg
and The jnfusion rate = 41.67 gitt/hr
Explanation: the correct dose will be 50mg/kg × kg/2.2 × 64lb
= 1454.54 mg
infusion rate will be
10 gtts/ml × 50mg/6 × 30/60
Infusion rate = 15000/360
= 41.67 gitt/hr
<span>The answer should be the vegitation. </span>
The horizontal component is calculated as:
Vhorizontal = V · cos(angle)
In your case Vhoriontal = 16 · cos(40) = 12.3 m/s
Answer: 12.3 m/s