Answer:
Explanation:
Electric field due to charge at origin
= k Q / r²
k is a constant , Q is charge and r is distance
= 9 x 10⁹ x 5 x 10⁻⁶ / .5²
= 180 x 10³ N /C
In vector form
E₁ = 180 x 10³ j
Electric field due to q₂ charge
= 9 x 10⁹ x 3 x 10⁻⁶ /.5² + .8²
= 30.33 x 10³ N / C
It will have negative slope θ with x axis
Tan θ = .5 / √.5² + .8²
= .5 / .94
θ = 28°
E₂ = 30.33 x 10³ cos 28 i - 30.33 x 10³ sin28j
= 26.78 x 10³ i - 14.24 x 10³ j
Total electric field
E = E₁ + E₂
= 180 x 10³ j +26.78 x 10³ i - 14.24 x 10³ j
= 26.78 x 10³ i + 165.76 X 10³ j
magnitude
= √(26.78² + 165.76² ) x 10³ N /C
= 167.8 x 10³ N / C .
Answer:
<em>0.45 mm</em>
Explanation:
The complete question is
a certain fuse "blows" if the current in it exceeds 1.0 A, at which instant the fuse melts with a current density of 620 A/ cm^2. What is the diameter of the wire in the fuse?
A) 0.45 mm
B) 0.63 mm
C.) 0.68 mm
D) 0.91 mm
Current in the fuse is 1.0 A
Current density of the fuse when it melts is 620 A/cm^2
Area of the wire in the fuse = I/ρ
Where I is the current through the fuse
ρ is the current density of the fuse
Area = 1/620 = 1.613 x 10^-3 cm^2
We know that 10000 cm^2 = 1 m^2, therefore,
1.613 x 10^-3 cm^2 = 1.613 x 10^-7 m^2
Recall that this area of this wire is gotten as
A = 
where d is the diameter of the wire
1.613 x 10^-7 = 
6.448 x 10^-7 = 3.142 x 
=
d = 4.5 x 10^-4 m = <em>0.45 mm</em>
<span>Acceleration is the change in velocity divided by time taken. It has both magnitude and direction. In this problem, the change in velocity would first have to be calculated. Velocity is distance divided by time. Therefore, the velocity here would be 300 m divided by 22.4 seconds. This gives a velocity of 13.3928 m/s. Since acceleration is velocity divided by time, it would be 13.3928 divided by 22.4, giving a final solution of 0.598 m/s^2.</span>
Answer:
5 mg, 
Explanation:
First of all, let's rewrite the mass in grams using scientific notation.
we have:
m = 0.005 g
To rewrite it in scientific notation, we must count by how many digits we have to move the dot on the right - in this case three. So in scientific notation is

If we want to convert into milligrams, we must remind that
1 g = 1000 mg
So we can use the proportion

and we find

Answer:
no becaus force is mass multiplied by acceleration. the mass of the elephant does not change