answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DochEvi [55]
1 year ago
10

If Anya decides to make the star twice as massive, and not change the length of any crossbar or the location of any object, what

does she have to do with the mass of the smiley face to keep the mobile in perfect balance? Note that she may have to change masses of other objects to keep the entire structure balanced
Physics
1 answer:
charle [14.2K]1 year ago
4 0

Answer:

She will make the mass of the smiley face twice as massive in order to keep the mobile in perfect balance.

Explanation:

mass of an object is directly proportional to the cube of its length. In this case the length is constant, the mass will also be constant for the smiley face, so that the mobile will be kept in perfect balance.

Therefore, If Anya decides to make the star twice as massive, and not change the length of any crossbar or the location of any object, she will make the mass of the smiley face twice as massive in order to keep the mobile in perfect balance.

You might be interested in
The total negative charge on the electrons in 1kg of helium (atomic number 2, molar mass 4) is____________.
tekilochka [14]

Answer:

Explanation:

n = \frac{m}{M}

n = \frac{1000}{4}

         = 250 moles.

    N  = n×6.02×10^{23}

        = 1.505×10^{26}

Total charge = (1.505×10^{26}) × (1.6×10^{-19})

                     = 2.4×10^{7} C.

4 0
1 year ago
Read 2 more answers
You throw a baseball at an angle of 30.0∘∘ above the horizontal. It reaches the highest point of its trajectory 1.05 ss later. A
garri49 [273]

Answer:

The speed with which the baseball leaves the hand = 20.58 m/s

Explanation:

The time take to reach highest height during a projectile's flight is given by

t = (u sin θ)/g

u = initial velocity of the baseball = ?

θ = angle of throw above the horizontal

g = acceleration due to gravity = 9.8 m/s²

1.05 = (u sin 30)/9.8

u = (1.05 × 9.8)/0.5

u = 20.58 m/s

7 0
1 year ago
When listening to tuning forks of frequency 256 Hz and 260 Hz, one hears the following number of beats per second. (A) 0 (B) 2 (
Degger [83]

Answer:

(C) 4 beats per second.

Explanation:

As we know that the no of beats can be calculated as.

No. of beats is equal to difference in the tuning forks frequencies.

So,

n= \nu _{1}- \nu _{2}.

Substitute the values of frequencies of 2 tuning forks in the above equation.

n=(260 Hz-256 Hz)\\n=4

Therefore the number of beats per second will be hear by the observer is 4 beats per second.

3 0
1 year ago
You throw a ball of mass 1 kg straight up. You observe that it takes 2.2 s to go up and down, returning to your hand. Assuming w
Elina [12.6K]

Answer:

10.791 m/s

5.93505 m

Explanation:

m = Mass of ball

v_f = Final velocity

v_i = Initial velocity

t_f = Final time

t_i = Initial time

g = Acceleration due to gravity = 9.81 m/s²

From the momentum principle we have

\Delta P=F\Delta t

Force

F=mg

So,

m(v_f-v_i)=mg(t_f-t_i)\\\Rightarrow v_i=v_f-g(t_f-t_i)\\\Rightarrow v_i=0-(-9.81)(1.1-0)\\\Rightarrow v_i=10.791\ m/s

The speed that the ball had just after it left the hand is 10.791 m/s

As the energy of the system is conserved

K_i=U\\\Rightarrow \dfrac{1}{2}mv_i^2=mgh\\\Rightarrow h=\dfrac{v_i^2}{2g}\\\Rightarrow h=\dfrac{10.791^2}{2\times 9.81}\\\Rightarrow h=5.93505\ m

The maximum height above your hand reached by the ball is 5.93505 m

5 0
2 years ago
Two students, sitting on frictionless carts, push against each other. Both are initially at rest and the mass of student 1 and t
Zepler [3.9K]

Answer:

  v₂ = v/1.5= 0.667 v

Explanation:

For this exercise we will use the conservation of the moment, for this we will define a system formed by the two students and the cars, for this isolated system the forces during the contact are internal, therefore the moment conserves.

Initial moment before pushing

    p₀ = 0

Final moment after they have been pushed

    p_{f} = m₁ v₁ + m₂ v₂

   p₀ =  p_{f}

   0 = m₁ v₁ + m₂ v₂

   m₁ v₁ = - m₂ v₂

Let's replace

   M (-v) = -1.5M v₂

   v₂ = v / 1.5

  v₂ = 0.667 v

6 0
1 year ago
Other questions:
  • A cheetah can run at 30 m/s, but only for about 12s. How far will it run in that time
    12·1 answer
  • An inclined plane is made out of a short plank of wood. It is used to move a 300N box up onto a tabletop 1m above the floor. Wha
    14·2 answers
  • What type of roadway has the highest number of hazards per mile?
    6·1 answer
  • Hanging by a thread. Two metal spheres hang from nylon threads and attract each other when brought close together. (i) What can
    13·1 answer
  • A cyclist moving towards right with an acceleration of 4m/s² at t = 0 he has travelled 5 m moving towards the right at 15 m/s wh
    7·1 answer
  • The moon has a mass of 7.4 × 1022 kg and completes an orbit of radius 3.8×108 m about every 28 days. The Earth has a mass of 6 ×
    15·1 answer
  • A uniform piece of wire, 20 cm long, is bent in a right angle in the center to give it an L-shape. How far from the bend is the
    15·2 answers
  • A piece of a metal alloy with a mass of 114 g was placed into a graduated cylinder that contained 25.0 mL of water, raising the
    13·1 answer
  • How many conditions does the NEC list whereby conductors shall be considered to be outside of a building or other structure?
    5·1 answer
  • The system shown above consists of two identical blocks that are suspended using four cords, each of a different length. Which o
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!