The angular velocity of the orbit about the sun is:
w = 1 rev / year = 1 rev / 3.15 × 10^7 s
Now in 1 rev there is 360° or 2π rad, therefore:
w = 2π rad / 3.15 × 10^7 s
To convert in linear velocity, multiply the rad /s by the
radius:
v = (2π rad / 3.15 × 10^7 s) * 93,000,000 miles
<span>v = 18.55 miles / s = 29.85 km / s</span>
Answer:
0.6295 A
Explanation:
I=mg/BL put values in this formula.
No one expected violet & ultraviolet spectral lines to be shifted towards the red.
Answer:
Rod 1 has greater initial angular acceleration; The initial angular acceleration for rod 1 is greater than for rod 2.
Explanation:
For the rod 1 the angular acceleration is
Similarly, for rod 2

Now, the moment of inertia for rod 1 is
,
and the torque acting on it is (about the center of mass)

therefore, the angular acceleration of rod 1 is


Now, for rod 2 the moment of inertia is


and the torque acting is (about the center of mass)


therefore, the angular acceleration
is


We see here that

therefore

In other words , the initial angular acceleration for rod 1 is greater than for rod 2.
Answer:
Acceleration, 
Explanation:
Given that,
The dogs of four-time Iditarod Trail Sled Dog Race champion Jeff King pull two 100-kg sleds that are connected by a rope, m = 100 kg
Force exerted by the doges on the rope attached to the front sled, F = 240 N
To find,
The acceleration of the sleds.
Solution,
Let a is the acceleration of the sleds. The product of mass and acceleration is called force. Its expression is given by :
F = ma

(m = 2m)

So, the acceleration of the sleds is
.