Answer:
T = 27.92 N
Explanation:
For this exercise let's use Newton's second law
T - W = m a
The weight
W = mg
The acceleration can be found by derivatives
a = dv / dt
v = 2 t + 0.6 t²
a = 2 + 0.6 t
We replace
T - mg = m (2 + 0.6t)
T = m (g + 2 + 0.6 t) (1)
Let's look for the time for the speed of 15 m / s
15 = 2 t + 0.6 t²
0.6 t² + 2 t - 15 = 0
We solve the second degree equation
t = [-2 ±√(4 - 4 0.6 (-15))] / 2 0.6
t = [-2 ±√40] / 1.3 = [-2 ± 6.325] / 1.2
We take the positive time
t = 3.6 s
Let's calculate from equation 1
T = 2.00 (9.8 + 2 + 0. 6 3.6)
T = 27.92 N
Complete Question
The complete question iws shown on the first uploaded image
Answer:
a

b

Explanation:
Now looking at the diagram let take that the magnetic field is moving in the x-axis
Now the magnetic force is mathematically represented as
x B
Note (The x is showing cross product )
Note the force(y-axis) is perpendicular to the field direction (x-axis)
Now when the loop is swinging forward
The motion of the loop is from y to z to to x to y
Now since the force is perpendicular to the motion(velocity) of the loop
Hence the force would be from z to y and back to z
and from lenze law the induce current opposes the force so the direction will be from y to z to x
Now when the loop is swinging backward
The motion of the induced current will now be x to z to y
As Saba was wearing high heels they are long from the bottom so they sank however Sana was wearing snow boots which means they were flat and so she didn’t sink.
Answer:
Explanation:
the solution is given in the attached pictures
Answer:
The coefficient of kinetic friction 
Explanation:
From the question we are told that
The length of the lane is 
The speed of the truck is 
Generally from the work-energy theorem we have that

Here N is the normal force acting on the truck which is mathematically represented as
is the change in kinetic energy which is mathematically represented as
=>
=>

=> 
=> 