Answer:
Explanation:
Given that,
Basket ball is drop from height
H=10m
It is dropped on planet mass
And the acceleration due to gravity on Mars is given as
g= 3.7m/s²
Time taken for the ball to reach the ground
Initial velocity of the body is zero
u=0m/s
Using equation of motion: free fall
H = ut + ½gt²
10 = 0•t + ½ × 3.7 ×t²
10 = 0 + 1.85t²
10 = 1.85t²
Then, t² =10/1.85
t² = 5.405
t = √ 5.405
t = 2.325seconds
So the time the ball spend on the air before reaching the ground is 2.325 seconds
Answer:
at y=6.29 cm the charge of the two distribution will be equal.
Explanation:
Given:
linear charge density on the x-axis, 
linear charge density of the other charge distribution, 
Since both the linear charges are parallel and aligned by their centers hence we get the symmetric point along the y-axis where the electric fields will be equal.
Let the neural point be at x meters from the x-axis then the distance of that point from the y-axis will be (0.11-x) meters.
<u>we know, the electric field due to linear charge is given as:</u>

where:
linear charge density
r = radial distance from the center of wire
permittivity of free space
Therefore,





∴at y=6.29 cm the charge of the two distribution will be equal.
-3 m/s
---------
per min
oh I think 8m/s to 3m/s to 0m/s
idk probably -0.08
Answer:
(C) 4 beats per second.
Explanation:
As we know that the no of beats can be calculated as.
No. of beats is equal to difference in the tuning forks frequencies.
So,
.
Substitute the values of frequencies of 2 tuning forks in the above equation.

Therefore the number of beats per second will be hear by the observer is 4 beats per second.
Answer:
17 m/s south
Explanation:
= Mass of dog = 10 kg
= Mass of skateboard = 2 kg
v = Combined velocity = 2 m/s
= Velocity of dog = 1 m/s
= Velocity of skateboard
In this system the linear momentum is conserved

The velocity of the skateboard will be 17 m/s south as the north is taken as positive