Answer:
(a). The initial velocity is 28.58m/s
(b). The speed when touching the ground is 33.3m/s.
Explanation:
The equations governing the position of the projectile are


where
is the initial velocity.
(a).
When the projectile hits the 50m mark,
; therefore,

solving for
we get:

Thus, the projectile must hit the 50m mark in 1.75s, and this condition demands from equation (1) that

which gives

(b).
The horizontal velocity remains unchanged just before the projectile touches the ground because gravity acts only along the vertical direction; therefore,

the vertical component of the velocity is

which gives a speed
of


Answer:
From the initial height h
Explanation:
When a material or substance is drop from a height h, it possesses potential energy, immediately it is dropped from that height, the potential energy is gradually converted to kinetic energy, it gets to a point where the potential energy equals the kinetic energy, as the material touches the ground, all potential energy has been converted to kinetic energy already
Answer:
66.98 db
Explanation:
We know that

L_T= Total signal level in db
n= number of sources
L_S= signal level from signal source.

= 66.98 db
Answer:
0.5 m
Explanation:
Givens:
ym1 = 2.5 mm
ym2 = 4.5 mm
Ф_1=π / 4
Ф_2=π / 2
We have 2 ways to solve this problem. The first one given that the 2 waves have the frequency then we know that the resultant wave amplitude is
Ym = (ym1 + ym2)cos(Ф_2/2)
By substitution we have
Ym= (0.025 + 0.045)cos(π/4) = 0.496 m
The second one is it treat them as Phasors where the phase between them is Ф_2=π / 2 Therefore
Ym^2=(ym1^2+ym2^2)
So we have Ym=√0.025^2+0.045^2
= 0.5 m