answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alukav5142 [94]
2 years ago
14

Why is the more cumbersome Two's complement representation preferred instead of the more intuitive sign bit magnitude approach?

Physics
1 answer:
Troyanec [42]2 years ago
7 0

Explanation:

The two's-complement mechanism has the benefit that it does not require the addition and subtraction circuitry to investigate the operands ' signs to evaluate either to add or subtract. This property makes the whole thing both easier to accomplish and able to handle arithmetic of higher accuracy with ease. Also Zero has only one interpretation, bypassing the subtle nuances associated with negative one that arise in the complement-systems of ones.

You might be interested in
A 70 kg student jumps down to form a 1 m high platform. She forgets to bend her knees and her downward motion stops in 0.02 seco
34kurt

Answer:

15,505 N

Explanation:

Using the principle of conservation of energy, the potential energy loss of the student equals the kinetic energy gain of the student

-ΔU = ΔK

-(U₂ - U₁) = K₂ - K₁ where U₁ = initial potential energy = mgh , U₂ = final potential energy = 0, K₁ = initial kinetic energy = 0 and K₂ = final kinetic energy = 1/2mv²

-(0 - mgh) = 1/2mv² - 0

mgh = 1/2mv² where m = mass of student = 70kg, h = height of platform  = 1 m, g = acceleration due to gravity = 9.8 m/s² and v = final velocity of student as he hits the ground.

mgh = 1/2mv²

gh = 1/2v²

v² = 2gh

v = √(2gh)

v = √(2 × 9.8 m/s² × 1 m)

v = √(19.6 m²/s²)

v = 4.43 m/s

Upon impact on the ground and stopping, impulse I = Ft = m(v' - v) where F = force, t = time = 0.02 s, m =mass of student = 70 kg, v = initial velocity on impact = 4.43 m/s and v'= final velocity at stopping = 0 m/s

So Ft = m(v' - v)

F = m(v' - v)/t

substituting the values of the variables, we have

F = 70 kg(0 m/s - 4.43 m/s)/0.02 s

= 70 kg(- 4.43 m/s)/0.02 s

= -310.1 kgm/s ÷ 0.02 s

= -15,505 N

So, the force transmitted to her bones is 15,505 N

3 0
2 years ago
Determine the sign (+ or −) of the torque about the elbow caused by the biceps, τbiceps, the sign of the weight of the forearm,
Alex Ar [27]
Ans: 
1.  τbiceps = +(Positive)
2.  τforearm = -(Negative)
3.  τball = -(Negative)

Explanation:

The figure is attached down below.

1. T<span>orque about the elbow caused by the biceps, τbiceps:
Since Torque = r x F (where r and F are the vectors)
</span>Where r is the vector from elbow to the biceps.
<span>
We can see in the figure that F(biceps) is in upward direction, and by applying the right hand rule from r to F, we get the counterclockwise direction. The torque in counterclockwise direction is positive(+). Therefore, the sign would be +.

2. </span>Torque about the the weight of the forearm, τforearm:
Since Torque = r x F (where r and F are the vectors)
Where r is the vector from elbow to the forearm.

Also weight is the special kind of Force caused by the gravity.

We can see in the figure that W(forearm) is in downward direction, and by applying the right hand rule from r to F, we get the clockwise direction. The torque in clockwise direction is negative(-). Therefore, the sign would be -.

3. Torque about the the weight of the ball, τball:
Since Torque = r x F (where r and F are the vectors)
Where r is the vector from elbow to the ball.

Also weight is the special kind of Force caused by the gravity.

We can see in the figure that W(ball) is in downward direction, and by applying the right hand rule from r to F, we get the clockwise direction. The torque in clockwise direction is negative(-). Therefore, the sign would be -.

8 0
2 years ago
Current X is 2.5 A and runs for 39 seconds. Current Y is 3.8 A and runs for 24 seconds. Which current delivered more charge, and
Aleonysh [2.5K]

Answer: B. Current x delivered 6.3 C more then Y

Explanation:

7 0
2 years ago
Two cars start 200 m apart and drive toward each other at a steady 10 m/s. On the front of one of them, an energetic grasshopper
vladimir1956 [14]

Answer:

Total distance does the grasshopper travel before the cars hit is 150 m

Explanation:

Each car moves x=100 m before they collide. Both the cars moving in constant velocity. time taken t by each car is

t=\frac{x}{v}

where x  is the distance traveled with velocity v

t=\frac{100}{10}\\t=10 sec

The insect is moving through this time period with a constant velocity of 15 m/s

The distance traveled by grasshopper  is

distance=V_{gh} \times t\\distance=15 \times 10\\distance=150 m

7 0
2 years ago
In order to get a tree stump out of the ground, chains are connected to two trucks. One truck pulls with a force of 600 N to the
Black_prince [1.1K]

Answer:

The net force on the stump is 1000 N.

Explanation:

Given that,

Force 1 acting on the truck, F_1=600\ N (due north)

Force 2 acting on the truck, F_2=800\ N (due west)

We need to find the net force on the stump. We know that force is a vector quantity. The net force on the stump is given by the the resultant force. It is given by :

F=\sqrt{F_1^2+F_2^2}

F=\sqrt{600^2+800^2}

F = 1000 N

So, the net force on the stump is 1000 N. Hence, this is the required solution.

3 0
2 years ago
Other questions:
  • Which of the following are dwarf planets? Check all that apply. Ceres Namaka Eris Charon Haumea Makemake Pluto
    11·2 answers
  • A rocket can fly into space because !
    7·1 answer
  • While it’s impossible to design a perpetual motion machine, that is, a machine that keeps moving forever, come up with ways to k
    12·2 answers
  • An athlete leaves one end of a pool of length l at t = 0 and arrives at the other end at time t1. she swims back and arrives at
    10·1 answer
  • What is the value of g on the surface of Saturn? Assume M-Saturn = 5.68×10^26 kg and R-Saturn = 5.82×10^7 m.Choose the appropria
    8·1 answer
  • The surface charge density on an infinite charged plane is - 2.10 ×10−6C/m2. A proton is shot straight away from the plane at 2.
    11·1 answer
  • A long, straight wire carrying a current of 3.45 A moves with a constant speed v to the right. A 5-turn circular coil of diamete
    11·1 answer
  • To practice tactics box 13.1 hydrostatics. in problems about liquids in hydrostatic equilibrium, you often need to find the pres
    9·1 answer
  • Before you start taking measurements though, we’ll first make sure you understand the underlying concepts involved. By what meth
    9·1 answer
  • Calculate the mass (in kg) of 54.3 m³ of granite. The density of granite is 2700 kg/m³. Give your answer to 2 decimal places.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!