answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lera25 [3.4K]
2 years ago
12

The chart shows data for four moving objects. A 4 column table with 4 rows. The first column is labeled Object with entries, W,

X, Y, Z. The second column is labeled Initial Velocity in meters per second with entries, 11, 10, 12, 20. The third column is labeled Final Velocity in meters per second with entries, 29, 34, 40, 28. The fourth column is labeled Change in Time in seconds with entries, 6, 12, 7, 8. Which object has the greatest acceleration? W X Y Z
Physics
1 answer:
KatRina [158]2 years ago
3 0

Answer:

y

Explanation:

I took the test

You might be interested in
If one of the satellites is at a distance of 20,000 km from you, what percent accuracy in the distance is required if we desire
Lesechka [4]
<span>It is quite straightforward to convert an uncertainty to a percent uncertainty. We can divide the amount of uncertainty by the original amount and then multiply by 100%.

(2 m / 20,000,000 m) X 100% = 0.00001%

The percent uncertainty is 0.00001%.

The percent accuracy is the 100% - percent uncertainty.
The percent accuracy = 100% - 0.00001% = 99.99999%

The percent accuracy is 99.99999%.</span>
8 0
2 years ago
The dial of a scale looks like this: 00.0kg. A physicist placed a spring on it. The dial read 00.6kg. He then placed a metal cha
saveliy_v [14]

Answer:

d. The scale's resolution is too low to read the change in mass

Explanation:

If we want to find the change in energy of the spring, we will have to use the Hooke's Law. Hooke's Law states that:

F = kx

since,

w = Fd

dw = Fdx

integrating and using value of F, we get:

ΔE = (0.5)kx²

where,

ΔE = Energy added to spring

k = spring constant

x = displacement

The spring constant is typically in range of 4900 to 29400 N/m.

So if we take the extreme case of 29400 N/m and lets say we assume an unusually, extreme case of 1 m compression, we get the value of energy added to be:

ΔE = (0.5)(29400 N/m)(1 m)²

ΔE = 1.47 x 10⁴ J

Now, if we convert this energy to mass from Einstein's equation, we get:

ΔE = Δmc²

Δm = ΔE/c²

Δm = (1.47 x 10⁴ J)/(3 x 10⁸ m/s)²

<u>Δm =  4.9 x 10⁻¹³ kg</u>

As, you can see from the answer that even for the most extreme cases the value of mass associated with the additional energy is of very low magnitude.

Since, the scale only gives the mass value upto 1 decimal place.

Thus, it can not determine such a small change. So, the correct option is:

<u>d. The scale's resolution is too low to read the change in mass</u>

8 0
2 years ago
Three couples and two single individuals have been invited to an investment seminar and have agreed to attend. Suppose the proba
lions [1.4K]

Answer:

a) Probability mass function of x

x P(X=x)

0 0.0602

1 0.0908

2 0.1700

3 0.2050

4 0.1800

5 0.1550

6 0.0843

7 0.0390

8 0.0147

b) Cumulative Distribution function of X

x F(x)

0 0.0602

1 0.1510

2 0.3210

3 0.5260

4 0.7060

5 0.8610

6 0.9453

7 0.9843

8 1.0000

The cumulative distribution function gives 1.0000 as it should.

Explanation:

Probability of arriving late = 0.43

Probability of coming late = 0.57

Let's start with the probability P(X=0) that exactly 0 people arrive late, the probability P(X=1) that exactly 1 person arrives late, the probability P(X=2) that exactly 2 people arrive late, and so on up to the probability P(X=8) that 8 people arrive late.

Interpretation(s) of P(X=0)

The two singles must arrive on time, and the three couples also must. It follows that P(X=0) = (0.57)⁵ = 0.0602

Interpretation(s) of P(X=1)

Exactly 1 person, a single, must arrive late, and all the rest must arrive on time. The late single can be chosen in 2 ways. The probabiliy that (s)he arrives late is 0.43.

The probability that the other single and the three couples arrive on time is (0.57)⁴

It follows that

P(X=1) = (2)(0.43)(0.57)⁴ = 0.0908

Interpretation(s) of P(X=2)

Two late can happen in two different ways. Either (i) the two singles are late, and the couples are on time or (ii) the singles are on time but one couple is late.

(i) The probability that the two singles are late, but the couples are not is (0.43)²(0.57)³

(ii) The probability that the two singles are on time is (0.57)²

Given that the singles are on time, the late couple can be chosen in 3 ways. The probability that it is late is 0.43 and the probability the other two couples are on time is (0.57)².

So the probability of (ii) is (0.57)²(3)(0.43)(0.57)² which looks better as (3)(0.43)(0.57)⁴ It follows that

P(X=2) = (0.43)²(0.57)³ + (3)(0.43)(0.57)⁴ = 0.0342 + 0.136 = 0.1700

Interpretations of P(X=3).

Here a single must arrive late, and also a couple. The late single can be chosen in 2 ways. The probability the person is late but the other single is not is (0.43)(0.57).

The late couple can be chosen in 3 ways. The probability one couple is late and the other two couples are not is (0.43)(0.57)². Putting things together, we find that

P(X=3) = (2)(3)(0.43)²(0.57)³ = 0.2050

Interpretation(s) P(X=4)

Since we either (i) have the two singles and one couple late, or (ii) two couples late. So the calculation will break up into two cases.

(i) Two singles and one couple late

Two singles' probability of being late = (0.43)² and One couple being late can be done in 3 ways, so its probability = 3(0.43)(0.57)²

(ii) Two couples late, one couple and two singles early

This can be done in only 3 ways, and its probability is 2(0.57)³(0.43)²

P(X=4) = (3)(0.43)³(0.57)² + (3)(0.57)³(0.43)² = 0.0775 + 0.103 = 0.1800

Interpretations of P(X=5)

For 5 people to be late, it has to be two couples and 1 single person.

For couples, The two late couples can be picked in 3 ways. Probability is 3(0.43)²(0.57)

The late single person can be picked in two ways too, 2(0.43)(0.57)

P(X=5) = 2(3)(0.43)³(0.57)² = 0.1550

Interpretations of P(X=6)

For 6 people to be late, we have either (i) the three couples are late or (ii) two couples and the two singles.

(i) Three couples late with two singles on time = (0.43)³(0.57)²

(ii) Two couples and two singles late

Two couples can be selected in 3 ways, so probability = 3(0.43)²(0.57)(0.43)²

P(X=6) = (0.43)³(0.57)² + 3(0.43)⁴(0.57) = 0.0258 + 0.0585 = 0.0843

Interpretation(s) of P(X=7)

For 7 people to be late, it has to be all three couples and only one single (which can be picked in two ways)

P(X=7) = 2(0.57)(0.43)⁴ = 0.0390

Interpretations of P(X=8)

Everybody had to be late

P(X=8) = (0.43)⁵ = 0.0147

6 0
2 years ago
At an age of 380,000 years, the temperature of the universe had fallen to 3000 K, and electrons could then combine with protons
defon

Answer:

The major transition occurred as a consequence of this change in the universe at this time is that  <em>b)The universe became transparent to light for the first time.</em>

Explanation:

For the first 380,000 years or so, the universe was essentially too hot for light to shine. The heat of creation smashed atoms together with enough force to break them up into a dense plasma, an opaque soup of protons, neutrons and electrons that scattered light like fog. Then 380,000 years after the Big Bang, matter cooled enough for atoms to form during the era of recombination, resulting in a transparent, electrically neutral gas.

This set loose the initial flash of light created during the Big Bang, which is detectable today as cosmic microwave background radiation. However, after this point, the universe was plunged into darkness, since no stars or any other bright objects had formed yet.

7 0
2 years ago
A helicopter travels west at 80 mph. It is moving above a car traveling on a highway at 80 mph. Given this information, you can
gavmur [86]

Answer:

d. at the same velocity

Explanation:

I will assume the car is also travelling westward because it was stated that the helicopter was moving above the car. In that case, it depends where the observer is. If the observer is in the car, the helicopter would look like it is standing still ( because both objects have the same velocity). If the observer is on the side of the road, both objects would be travelling at the same velocity. Also recall that, velocity is a vector quantity; it is direction-aware. Velocity is the rate at which the position changes but speed is the rate at which object covers distance and it is not direction wise. Hence velocity is the best option.

5 0
2 years ago
Other questions:
  • Uranus has an orbital period of 84.07 years. In two or more complete sentences, explain how to calculate the average distance fr
    7·2 answers
  • Use the momentum equation for photons found in this week's notes, the wavelength you found in #3, and Plank’s constant (6.63E-34
    14·2 answers
  • If the radius of the sun is 7.001×105 km, what is the average density of the sun in units of grams per cubic centimeter? The vol
    13·1 answer
  • Which statements describe the characteristics of asteroids? Check all that apply. formed 4.6 billion years ago orbit the Sun bey
    7·2 answers
  • A 65-cm segment of conducting wire carries a current of 0.35 A. The wire is placed in a uniform magnetic field that has a magnit
    13·2 answers
  • What is NOT one of the three primary resources that families have to reach financial goals?
    15·1 answer
  • You are at a stop light in your car, stuck behind a red light. Just before the light is supposed to change, a fire engine comes
    13·1 answer
  • What is the magnitude of the momentum of a 11kg object moving at 2.2 m/s?
    11·1 answer
  • 4. A cylindrical tube has a length of 14.4cm and a radius of 1.5cm and is filled with a colorless gas. If the density of the gas
    12·1 answer
  • g The international space station has an orbital period of 93 minutes at an altitude (above Earth's surface) of 410 km. A geosyn
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!