answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Romashka-Z-Leto [24]
2 years ago
9

An ocean liner is cruising at 10 meters/second and is about to approach a stationary ferryboat. A parcel is released from the oc

ean liner from a height of 5.5 meters above the ferryboat’s deck. Calculate the distance at which the ferryman should position the boat from the point horizontally below the point of release so that the parcel lands inside the boat.
Physics
1 answer:
Afina-wow [57]2 years ago
4 0
The parcel will undergo projectile motion, which means that it will have motion in both the horizontal and vertical direction.

First, we determine how long the parcel will fall using:

s = ut + 1/2 at²

where s will be the height, u is the initial vertical velocity of the parcel (0), t is the time of fall and a is the acceleration due to gravity. 

5.5 = (0)(t) + 1/2 (9.81)(t)²
t = 1.06 seconds

Now, we may use this time to determine the horizontal distance covered by the parcel by using:
distance = velocity * time

The horizontal velocity of the parcel will be equal to the horizontal velocity of the cruise liner.

Distance = 10 * 1.06
Distance = 10.6 meters

The boat should be 10.6 meters away horizontally from the point of release.
You might be interested in
In ideal flow, a liquid of density 850 kg/m3 moves from a horizontal tube of radius 1.00 cm into a second horizontal tube of rad
Crank

Answer:

a)   Q = π r₁ √ 2ΔP / rho [r₁² / r₂² -1] , b) Q = 3.4 10⁻² m³ / s , c)      Q = 4.8 10⁻² m³ / s

Explanation:

We can solve this fluid problem with Bernoulli's equation.

         P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂

With the two tubes they are at the same height y₁ = y₂

        P₁-P₂ = ½ ρ (v₂² - v₁²)

The flow rate is given by

         A₁ v₁ = A₂ v₂

         v₂ = v₁ A₁ / A₂

We replace

         ΔP = ½ ρ [(v₁ A₁ / A₂)² - v₁²]

         ΔP = ½ ρ v₁² [(A₁ / A₂)² -1]

Let's clear the speed

         v₁ = √ 2ΔP /ρ[(A₁ / A₂)² -1]

The expression for the flow is

           Q = A v

           Q = A₁ v₁

           Q = A₁ √ 2ΔP / rho [(A₁ / A₂)² -1]

The areas are

            A₁ = π r₁

            A₂ = π r₂

We replace

        Q = π r₁ √ 2ΔP / rho [r₁² / r₂² -1]

Let's calculate for the different pressures

      r₁ = d₁ / 2 = 1.00 / 2

      r₁ = 0.500 10⁻² m

      r₂ = 0.250 10⁻² m

b) ΔP = 6.00 kPa = 6 10³ Pa

      Q = π 0.5 10⁻² √(2 6.00 10³ / (850 (0.5² / 0.25² -1))

       Q = 1.57 10⁻² √(12 10³/2550)

        Q = 3.4 10⁻² m³ / s

c) ΔP = 12 10³ Pa

        Q = 1.57 10⁻² √(2 12 10³ / (850 3)

         Q = 4.8 10⁻² m³ / s

5 0
2 years ago
(Another tomato/skyscraper problem.) You are looking out your window in a skyscraper, and again your window is at a height of 45
Ivan

Answer:

1027.2 m

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration due to gravity = 32.2 ft/s

s=ut+\frac{1}{2}at^2\\\Rightarrow u=\frac{s-\frac{1}{2}at^2}{t}\\\Rightarrow u=\frac{450-\frac{1}{2}\times 32.2\times 2^2}{2}\\\Rightarrow u=192.8\ ft/s

v^2-u^2=2as\\\Rightarrow s=\frac{v^2-u^2}{2a}\\\Rightarrow s=\frac{192.8^2-0^2}{2\times 32.2}\\\Rightarrow s=577.20\ m

The height the tomato would fall is 450+577.2 = 1027.2 m

6 0
2 years ago
Tiana jogs 1.5 km along a straight path and then turns and jogs 2.4 km in the opposite direction. She then turns back and jogs 0
vichka [17]

Answer:

Distance: 4.6km Displacement= -0.2km

Explanation:

Total distance: 1.5+2.4+0.7= 4.6 km

Displacement: 1.5-2.4+0.7= -0.2km

The displacement may also be 0.2km, it just depends on if it wants it negative or not.

7 0
2 years ago
Ronald likes to use his erector set more than anything else.
Rashid [163]
C: Foreclosure. People in identity foreclosure have committed to an identity too soon. Often they have simply adopted the identity of a parent, close relative or respected friend.
5 0
2 years ago
Read 2 more answers
To determine the y-component of a projectile’s velocity, what operation is performed on the angle of the launch?
koban [17]

<em>To determine the y component of velocity of a projectile </em><u><em>sine </em></u><em>operation is performed on the angle of launch.</em>

<u>Answer:</u> <em>sine</em>

<u>Explanation:</u>

Thus a_x=0,a_y=g

The initial velocity u can be resolved along two directions.

Along the X direction initial velocity = u cos θ

Along y direction initial velocity= u sin θ

From the equation of motion v= u+at

Thus velocity along x direction v_x=u cos θ

Velocity along y direction v_y= u sinθ -gt

Sign of g is negative.

3 0
2 years ago
Read 2 more answers
Other questions:
  • Mary takes 6.0 seconds to run up a flight of stairs that is 102 meters long. if mary's weight is 87 newtons, what power has mary
    7·2 answers
  • The air in tires can support a car because gases __________.
    5·1 answer
  • A transformer changes the 10,000 v power line to 120 v. if the primary coil contains 750 turns, how many turns are on the second
    14·1 answer
  • Rock X is released from rest at the top of a cliff that is on Earth. A short time later, Rock Y is released from rest from the s
    5·1 answer
  • In the winter sport of bobsledding, athletes push their sled along a horizontal ice surface and then hop on the sled as it start
    10·2 answers
  • What visible signs indicate a precipitation reaction when two solutions are mixed?
    6·1 answer
  • Four distinguishable particles move freely in a room divided into octants (there are no actual partitions). Let the basic states
    6·1 answer
  • The capacitors in each circuit are fully charged before the switch is closed. Rank, from longest to shortest, the length of time
    12·1 answer
  • A man in a strength competition pulls an 18-wheel truck 3.10 m in 20.5 s. There is a cable that is attached to his body that exe
    7·1 answer
  • 2) A man squeezes a pin between his thumb and finger, as shown in Fig. 6.1.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!