Answer:
A.)1.52cm
B.)1.18cm
Explanation:
angular speed of 120 rev/min.
cross sectional area=0.14cm²
mass=12kg
F=120±12ω²r
=120±12(120×2π/60)^2 ×0.50
=828N or 1068N
To calculate the elongation of the wire for lowest and highest point
δ=F/A
= 1068/0.5
δ=2136MPa
'E' which is the modulus of elasticity for alluminium is 70000MPa
δ=ξl=φl/E =2136×50/70000=1.52cm
δ=F/A=828/0.5
=1656MPa
δ=ξl=φl/E
=1656×50/70000=1.18cm

Answer:
5.843 m
Explanation:
suppose that the arrow leave the bow with a horizontal speed , towards he bull's eye.
lets consider that horizontal motion
distance = speed * time
time = 40/ 37 = 1.081 s
arrow doesnot have a initial vertical velocity component. but it has a vertical motion due to gravity , which may cause a miss of the target.
applying motion equation
(assume g = 10 m/s²)

Arrow misses the target by 5.843m ig the arrow us split horizontally
Answer:
Wave W is a sound wave, Waves X and Y are light waves, and it is impossible to tell what kind of wave Wave Z is.
Explanation:
W travels fastest through metal
X travels fastest through air,
Y travels more slowly through water than air
Z travels more slowly at cool temperatures
W appears to be sound wave as sound travels fastest through metal .
X appears to be light wave as light travels fastest in air .
Y also appears to be light wave as speed of light is reduced when it passes from air to water .
Z It is impossible to tell anything about the nature of Z wave .
Answer:

Explanation:
As we know that the magnetic field near the center of solenoid is given as

now we know that initially the length of the solenoid is L = 18 cm and N number of turns are wounded on it
So the magnetic field at the center of the solenoid is 2 mT
now we pulled the coils apart and the length of solenoid is increased as L = 21 cm
so we have

now plug in all values in it


Answer:
The correct option is C
Explanation:
The pendulum bob would return at the same time because the initial angle a pendulum bob is dropped does not affect it's period (the time it takes for the pendulum to move back and forth), however the one with a larger angle move faster but would eventually arrive at the same "starting point" due to varying displacements made.