Answer:
the expected distance is 4.32 m
Explanation:
given data
half life time = 1.8 ×
s
speed = 0.8 c = 0.8 × 3 ×
to find out
expected distance over
solution
we know c is speed of light in air is 3 ×
m/s
we calculate expected distance by given formula that is
expected distance = half life time × speed .........1
put here all these value
expected distance = half life time × speed
expected distance = 1.8 ×
× 0.8 × 3 ×
expected distance = 4.32
so the expected distance is 4.32 m
Complete Question:
A beam of white light is incident on the surface of a diamond at an angle
, since the index of refraction depends on the light's wavelength, the different colors that comprise white light will spread out as they pass through the diamond. For example, the indices of refraction in diamond are
for red light and
for blue light. Thus, blue light and red light are refracted at different angles inside the diamond. The surrounding air has
.
Now consider θc, the angle at which the blue refracted ray hits the bottom surface of the diamond. If θc is larger than the critical angle θcrit, the light will not be refracted out into the air, but instead it will be totally internally reflected back into the diamond. Find θcrit. Express your answer in degrees to four significant figures.
Answer:

Explanation:
Only the blue refracted ray is related to the critical angle in this question


The relationship between the critical angle(
),
and
can be given as 

Answer:
18 W
Explanation:
Applying,
P = V²/R.................. Equation 1
Where P = Power of both glowing bulbs, V = Voltage, R = Combined Resistance of both bulbs
Since: It is a series circuit,
Then,
R = R1+R2............. Equation 2
Where R1= Resistance of the first bulb, R2 = Resistance of the second bulb
Given: R1 = R2 = 8 Ω
Substitute into equation 1
R = 8+8
R = 16 Ω
Also Given: V = 12 V
Substitute into equation 1
P = 12²/8
P = 144/8
P = 18 W
Explanation:
It is given that,
Magnetic field, B = 0.5 T
Speed of the proton, v = 60 km/s = 60000 m/s
The helical path followed by the proton shown has a pitch of 5.0 mm, p = 0.005 m
We need to find the angle between the magnetic field and the velocity of the proton. The pitch of the helix is the product of parallel component of velocity and time period. Mathematically, it is given by :





So, the angle between the magnetic field and the velocity of the proton is 50.58 degrees. Hence, this is the required solution.
To solve this problem it is necessary to apply the fluid mechanics equations related to continuity, for which the proportion of the input flow is equal to the output flow, in other words:

We know that the flow rate is equivalent to the velocity of the fluid in its area, that is,

Where
V = Velocity
A = Cross-sectional Area
Our values are given as



Since there is continuity we have now that,






Therefore the speed of the water's house supply line is 0.347m/s