answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mars1129 [50]
2 years ago
10

You are to design a rotating cylindrical axle to lift 800 N buckets of cement from the ground to a rooftop 78.0 m above the grou

nd. The buckets will be attached to a hook on the free end of a cable that wraps around the rim of the axle; as the axle turns, the buckets will rise.
What should the diameter of the axle be in order to raise the buckets at a steady 2.00 cm/s when it is turning at 7.5 rpm?
Physics
1 answer:
earnstyle [38]2 years ago
6 0

Answer:

5.09 cm

Explanation:

using the formula

V = rω where r is radius and ω is the angular speed and V is the speed

ω = 7. 5 rpm = 7.5 × 2πrad / 60 seconds = 0.7855 rad s⁻¹ since one revolution = 2π and 1 minutes = 60 seconds

2.00 cm/s =r ×0.7855 rad s⁻¹

r = 2.00 cm/s / 0.7855 rad s⁻¹ = 2.546 cm

d = 2r =2 × 2.546 cm = 5.09 cm

You might be interested in
A 56 kg diver runs and dives from the edge of a cliff into the water which is located 4.0 m below. If she is moving at 8.0 m/s t
Reil [10]

Answer:

1) 2197.44 J

2) 0 J

3) 2197.44 J = Constant

4) 2197.44 J

5) Approximately 8.86 m/s

Explanation:

The given parameters are;

The mass of the diver, m = 56 kg

The height of the cliff, h = 4.0 m

The speed with which the diver is moving, vₓ = 8.0 m/s

The gravitational potential energy = Mass, m × Height of the cliff, h × Acceleration due to gravity, g

1) Her gravitational potential energy = 56 × 4.0 × 9.81 = 2197.44 J

2) The kinetic energy = 1/2·m·u²

Where;

u = Her initial velocity = 0 when she just leaves the cliff

Therefore;

Her kinetic energy when she just leaves the cliff = 1/2 × 56 × 0² = 0 J

3) The total mechanical energy = Kinetic energy + Potential energy

The total mechanical energy is constant

Her total mechanical energy relative to the water surface when she leaves the cliff = Her gravitational potential energy = 2197.44 J = Constant

4) Her total mechanical energy relative to the water surface just before she enters the water = 2197.44 J

5) The speed with which she enters the water, v, is given from, v² = u² + 2·g·h

Where;

u = The initial velocity at the top of the cliff before she jumps= 0 m/s

∴ v² = 0² + 2 × 9.81 × 4 = 78.48

v = √78.48 ≈ 8.86 m/s

The speed with which she enters the water, v ≈ 8.86 m/s

7 0
2 years ago
A transition metal complex in solution has an absorption peak at 450 nm, in the blue region of the visible spectrum. What color
Ivan

Answer:

In the case of a solution transition metal complex that has an absorption peak at 450 nm in the blue region of the visible spectrum, the (complementary) color of this solution is orange (option B).

Explanation:

The portion of UV-visible radiation that is absorbed implies that a portion of electromagnetic radiation is not absorbed by the sample and is therefore transmitted through it and can be captured by the human eye. That is, in the visible region of a complex, the visible color of a solution can be seen and that  corresponds to the wavelengths of light it transmits, not absorbs. The  absorbing color is complementary to the color it transmits.

So, in the attached image you can see the approximate wavelengths with the colors, where they locate the wavelength with the absorbed color, you will be able to observe the complementary color that is seen or reflected.

<u><em> In the case of a solution transition metal complex that has an absorption peak at 450 nm in the blue region of the visible spectrum, the (complementary) color of this solution is orange (option B).</em></u>

7 0
2 years ago
Two children stand on a platform at the top of a curving slide next to a backyard swimming pool. At the same moment the smaller
victus00 [196]

1.

Answer:

a) It is less

Explanation:

By energy conservation we can say that initial potential energy of both child must be equal to the final kinetic energy of the two child.

Since initially they are at same height so we will say that initial potential energy will be given as

mgH and MgH

so the child with greater mass has more energy and hence smaller child will reach with smaller kinetic energy

2.

Answer:

b. The two speeds are equal.

Explanation:

As we know by mechanical energy conservation law we have

mgh = \frac{1}{2}mv^2

v = \sqrt{2gh}

since both child starts at same height so here they both will reach the bottom at same speed

3.

Answer:

c. The two accelerations are equal

Explanation:

Since we know that average acceleration of the motion is given as

a = \frac{v_f - v_i}{\Delta t}

since here initial and final speeds are same so they both must have same average acceleration here.

5 0
2 years ago
A rock is dropped from the top of a tall building. The rock's displacement in the last second before it hits the ground is 46 %
olasank [31]

Answer:

height is 69.68 m

Explanation:

given data

before it hits the ground =  46 % of entire distance

to find out

the height

solution

we know here acceleration and displacement that is

d = (0.5)gt²     ..............1

here d is distance and g is  acceleration and t is time

so when object falling it will be

h = 4.9 t²   ....................2

and in 1st part of question

we have (100% - 46% ) = 54 %

so falling objects will be there

0.54 h = 4.9 (t-1)²       ...................3

so

now we have 2 equation with unknown

we equate both equation

1st equation already solve for h

substitute h in the second equation and find t

0.54 × 4.9 t² = 4.9 (t-1)²  

t = 0.576 s and  3.771 s

we use here 3.771 s because  0.576 s is useless displacement in the last second before it hits the ground is 46 % of the entire distance it falls

so take t = 3.771 s

then h from equation 2

h = 4.9 t²

h = 4.9 (3.771)²

h =  69.68 m

so height is 69.68 m

6 0
2 years ago
(a) when rebuilding her car's engine, a physics major must exert 300 n of force to insert a dry steel piston into a steel cylind
Vilka [71]
There are some missing data in the text of the problem. I've found them online:
a) coefficient of friction dry steel piston - steel cilinder: 0.3
b) coefficient of friction with oil in between the surfaces: 0.03

Solution:
a) The force F applied by the person (300 N) must be at least equal to the frictional force, given by:
F_f = \mu N
where \mu is the coefficient of friction, while N is the normal force. So we have:
F=\mu N
since we know that F=300 N and \mu=0.3, we can find N, the magnitude of the normal force:
N= \frac{F}{\mu}= \frac{300 N}{0.3}=1000 N

b) The problem is identical to that of the first part; however, this time the coefficienct of friction is \mu=0.03 due to the presence of the oil. Therefore, we have:
N= \frac{F}{\mu}= \frac{300 N}{0.03}=10000 N
8 0
2 years ago
Other questions:
  • if a volcano spews a 500-kg rock vertically upward a distance of 500m. what was its velocity when it left the volcano? if the vo
    9·1 answer
  • Lauren wants to know which location in her apartment is best for growing African violets. She has three African violets. She put
    13·1 answer
  • Submarine a travels horizontally at 11.0 m/s through ocean water. it emits a sonar signal of frequency f 5 5.27 3 103 hz in the
    6·1 answer
  • A toy rocket is launched vertically from ground level (y = 0 m), at time t = 0.0 s. The rocket engine provides constant upward a
    6·1 answer
  • A 15.0-gram lead ball at 25.0°C was heated with 40.5 joules of heat. Given the specific heat of lead is 0.128 J/g∙°C, what is th
    8·1 answer
  • If the surface temperature of that person's skin is 30∘C (that's a little lower than healthy internal body temperature becaus
    8·1 answer
  • The Sun orbits the center of the Milky Way galaxy once each 2.60 × 108 years, with a roughly circular orbit averaging 3.00 × 104
    6·1 answer
  • Which letter correctly identifies the part of the hydrologic cycle that is most directly affected by impervious building materia
    10·1 answer
  • Consider two slides, both of the same height. One is long and the other is short. From which slide will a child have a greater f
    12·1 answer
  • A farsighted girl has a near point at 2.0 m but has forgotten her glasses at home. The girl borrows eyeglasses that have a power
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!