Answer:
14160 kg/m^3
Explanation:
First of all, we need to find the volume of the cylinder.
The volume of the cylinder is given by:

where:
is the radius
is the height
Substituting, we find

And the density is given by

where m = 1 kg is the mass. Substituting, we find

Answer:
2.08 kg
Explanation:
Newton's second law states that the acceleration of an object is proportional to the force applied to the object, according to the equation:

where F is the force applied, m is the mass of the object and a its acceleration.
In this situation, the soccer ball is kicked with a force F=13.5 N and its acceleration is a=6.5 m/s^2, therefore its mass is

Answer:
A. Scapegoat theory
A P E X
Explanation:
It's the tendency to find a group on which to blame problems in order to divert attention away from one's own failings.
Answer: force of gravity on the body due to height difference above the earth's surface
Explanation: as you increase the height of a body above ground, you do work against gravity in moving it from a point on the earth's surface to that point. So a body falling has a stored up gravito-potential energy which acts on it downward due to its mass, accelerating it downwards
Answer b): kinetic energy of the body
Explanation: the downward force produces an acceleration of magnitude 9.81m/s2 downwards which means an increasing velocity. This increasing velocity means the kinetic energy of the body is increasing (kinetic energy is proportional to velocity of the body squared)
<span>x=((12.3/100)m)cos[(1.26s^−1)t]
v= dx/dt = -</span><span>((12.3/100)*1.26)sin[(1.26s^−1)t]
v=</span>-((12.3/100)*1.26)sin[(1.26s^−1)t]=-((12.3/100)*1.26)sin[(1.26s^−1)*(0.815)]
v=<span>
<span>-0.13261622 m/s
</span></span>the object moving at 0.13 m/s <span>at time t=0.815 s</span>