Answer:
Explanation:
Impulse = Force x time = change in momentum
F x t = m ( v - u )
In both cases, u are same and v=0
So change in momentum is same
hence , impulse is same.
F = Change in momentum / time
In case of air mattress , time increases
Hence average force decreases .
Option e is correct .
Answer:
Proton: v=0.689 m/s
Neutron: v=0.688 m/s
Electron: v=1265.078 m/s
Alpha particle: v=0.173 m/s
Explanation:
De Broglie equation allows you to calculate the “wavelength” of an electron or any other particle or object of mass m that moves with velocity v:
λ=
h is the Planck constant: 6.626×10⁻³⁴
We know that the wavelength of the particle is 575 nm (575×10⁻⁹m), so we find the velocity v for each particle:
λ=
v=h÷(mλ)
<u>Proton:</u>
m=1.673×10⁻²⁴ g ·
=1.673×10⁻²⁷ kg
v=h÷(mλ)
v=6.626×10⁻³⁴
÷(1.673×10⁻²⁷ kg×575×10⁻⁹m)
v=0.689 m/s
<u>Neutron:</u>
m=1.675×10⁻²⁴ g ·
=1.675×10⁻²⁷ kg
v=h÷(mλ)
v=6.626×10⁻³⁴
÷(1.675×10⁻²⁷ kg×575×10⁻⁹m)
v=0.688 m/s
<u>Electron:</u>
m= 9.109×10⁻²⁸ g ·
=9.109×10⁻³¹ kg
v=h÷(mλ)
v=6.626×10⁻³⁴
÷(9.109×10⁻³¹ kg×575×10⁻⁹m)
v=1265.078 m/s
<u>Alpha particle:</u>
m=6.645×10⁻²⁴ g ·
=6.645×10⁻²⁷ kg
v=h÷(mλ)
v=6.626×10⁻³⁴
÷(6.645×10⁻²⁷ kg×575×10⁻⁹m)
v=0.173 m/s
Answer:
(A) = 3.57 m
Explanation:
from the question we are given the following:
diameter (d) = 3.2 m
mass (m) == 42 kg
angular speed (ω) = 4.27 rad/s
from the conservation of energy
mgh = 0.5 mv^{2} + 0.5Iω^{2} ...equation 1
where
Inertia (I) = 0.5mr^{2}
ω = \frac{v}{r}
equation 1 now becomes
mgh = 0.5 mv^{2} + 0.5(0.5mr^{2})(\frac{v}{r})^{2}
gh = 0.5 v^{2} + 0.5(0.5)(v)^{2}
4gh = 2v^{2} + v^{2}
h = 3v^{2} ÷ 4 g .... equation 2
from ω = \frac{v}{r}
v = ωr = 4.27 x (3.2 ÷ 2)
v = 6.8 m/s
now substituting the value of v into equation 2
h = 3v^{2} ÷ 4 g
h = 3 x (6.8)^{2} ÷ (4 x 9.8)
h = 3.57 m
The total work is
(mass of the elevator, kg) x (9.8 m/s²) x (9.0 m) Joules .
Answer:
To obtain the power, we first need to find the work made by the force.
1) To calculate the work, we need the next equation:

So the force is given by the problem so our mission is to find 'dx' in terms of 't'
2) we know that:

So we have:

Then:

3) Finally, we replace everything:

After some calculation, we have as a result that the work is:
161.9638 J.
4) To calculate the power we need the next equation:

So
P = 161.9638/4.7 = 34.46 W