answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lord [1]
2 years ago
14

What's the diameter of a dish antenna that will receive 10−20W of power from Voyager at this time? Assume that the radio transmi

tter on Voyager transmits equally in all directions(isotropically). In fact, the antenna on Voyager focuses the signal in a beam aimed at the earth, so this problem over-estimates the size of the receiving dish needed.
Physics
1 answer:
Murrr4er [49]2 years ago
3 0

Complete Question:

The Voyager 1 spacecraft is now beyond the outer reaches of our solar system, but earthbound scientists still receive data from the spacecraft s 20-W radio transmitter. Voyager is expected to continue transmitting until about 2025, when it will be some 25 billion km from Earth.

What s the diameter of a dish antenna that will receive 10−20W of power from Voyager at this time? Assume that the radio transmitter on Voyager transmits equally in all directions(isotropically).  In fact, the antenna on Voyager focuses the signal in a beam aimed at the earth, so this problem over-estimates the size of the receiving dish needed.

Answer:

d = 2,236 m.

Explanation:

The received power on Earth, can be calculated as the product of the intensity (or power density) times the area that intercepts the power radiated.

As we assume that  the transmitter antenna is ominidirectional, power is spreading out over a sphere with a radius equal to the distance to the source.

So, we can get the power density as follows:

I = P /A = P / 4*π*r², where P = 20 W, and r= 25 billion km = 25*10¹² m.

⇒ I = 20 W / 4*π* (25*10¹²)² m²

The received power, is just the product of this value times the area of the receiver antenna, which we assumed be a circle of diameter d:

Pr = I. Ar =( 20W / 4*π*(25*10¹²)² m²) * π * (d²/4) = 10⁻²⁰ W

Simplifying common terms, we can solve for d:

d= √(16*(25)²*10⁴/20) = 2,236 m.

You might be interested in
A careful photographic survey of Jupiter’s moon Io by the spacecraft Voyager 1 showed active volcanoes spewing liquid sulfur to
Y_Kistochka [10]

Answer:

529.15 m/s

Explanation:

h = Maximum height = 70000 m

g = Acceleration due to gravity = 2 m/s²

m = Mass of sulfur

As the potential and kinetic energies are conserved

mgh=\dfrac{1}{2}mv^2\\\Rightarrow h=\dfrac{v^2}{2g}\\\Rightarrow v=\sqrt{2gh}\\\Rightarrow v=\sqrt{2\times 2\times 70000}\\\Rightarrow v=529.15\ m/s

The speed with which the liquid sulfur left the volcano is 529.15 m/s

7 0
2 years ago
A beam of electrons is sent horizontally down the axis of a tube to strike a fluorescent screen at the end of the tube. On the w
slamgirl [31]

Answer:

The answer is 3.

Explanation:

The answer to this question can be found by applying the right hand rule for which the pointer finger is in the direction of the electron movement, the thumb is pointing in the direction of the magnetic field, so the effect that this will have on the electrons is the direction that the middle finger points in which is right in this example.

So as a result of the magnetic field directed vertically downwards which is at a right angle with the electron beams, the electrons will move to the right and the spot will be deflected to the right of the screen when looking from the electron source.

I hope this answer helps.

4 0
2 years ago
You are given two rectangular blocks of shiny metal, Block A and Block B, and are asked to determine which one will float in a b
vladimir2022 [97]

Answer:

Explanation:

Volume of block A = 10 x 6 x 1 = 60 cm³

Mass of block A = 630 g

density of mass A = mass / density

= 630 / 60 = 10.5g / cm³

Volume of block B = 5 x 5 x 3 = 75 cm³

Mass of block A = 604 g

density of mass A = mass / density

= 604 / 75 = 8.05 g / cm³

Since density of both A and B are less than that of mercury , both will float in mercury.

7 0
2 years ago
If a 1,300 kg car with no people inside is on the edge of a cliff 1,500 m above the ground, what is its potential energy?
Ghella [55]

<u>Given that</u>

mass (m) = 1300 Kg ,

height (h) = 1500 m

Determine the potential energy ?

     P.E = m × g × h

           = 1300 × 9.81 × 1500

           = 19129500  Joules

           = 19129.5 KJ

3 0
2 years ago
Which best describes the importance of mitosis to living organisms? genetic variation and growth growth and development developm
Scrat [10]

Answer:

b.

Explanation:

Mitosis is important for growth and development  of living organisms.

8 0
2 years ago
Other questions:
  • On Mars, where air resistance is negligible, an astronaut drops a rock from a cliff and notes that the rock falls about d meters
    11·2 answers
  • Kristina works out seven days a week. Lately, she has been tired, and her body aches. If she is overtraining, which training pri
    7·1 answer
  • A rubber ball with a mass 0.20 kg is dropped vertically from a height of 1.5 m above the floor. The ball bounces off of the floo
    15·1 answer
  • A beam of electrons moves at right angles to a magnetic field of 4.5 × 10-2 tesla. If the electrons have a velocity of 6.5 × 106
    14·1 answer
  • A uniformly accelerated car passes three equally spaced traffic signs. The signs are separated by a distance d = 25 m. The car p
    8·1 answer
  • When work is done by an applied force, the object's energy will change. In this Interactive, does the work cause a kinetic energ
    13·1 answer
  • Finally, you are ready to answer the main question. Cheetahs, the fastest of the great cats, can reach 50.0 miles/hourmiles/hour
    8·1 answer
  • It has been proposed that extending a long conducting wire from a spacecraft (a "tether") could be used for a variety of applica
    9·1 answer
  • Two long, parallel, current-carrying wires lie in an xy-plane. The first wire lies on the line y = 0.340 m and carries a current
    11·1 answer
  • 5. A nail contains trillions of electrons. Given that electrons repel from each other, why do they not then fly out of the nail?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!