Answer:
fr = ½ m v₀²/x
Explanation:
This exercise the body must be on a ramp so that a component of the weight is counteracted by the friction force.
The best way to solve this exercise is to use the energy work theorem
W = ΔK
Where work is defined as the product of force by distance
W = fr x cos 180
The angle is because the friction force opposes the movement
Δk =
–K₀
ΔK = 0 - ½ m v₀²
We substitute
- fr x = - ½ m v₀²
fr = ½ m v₀²/x
Answer:
The correct option is (B).
Explanation:
The Kepler's third law of motion gives the relationship between the orbital time period and the distance from the semi major axis such that,

It is mentioned that, an asteroid with an orbital period of 8 years. So,

So, an asteroid with an orbital period of 8 years lies at an average distance from the Sun equal to 4 astronomical units.
Explanation:
A projectile motion may be defined as that form of a motion that is experienced by an object or a particle which is projected near the surface of the Earth and the particle moves along the curved path subjected to gravity force only.
Thus a projectile motion is always acted upon by a constant acceleration due to gravity in the down ward direction.
In the context, Quinn shoots two particle x and y from his sling shot and he observes that both his projectiles travels in a parabola curve in the air. Both the object x and y touches the ground a distance apart from him which is known as the range and it depends upon the velocity of the projectile. Both the projectile reaches a maximum height and then drop on the ground in a parabola shape.
C I believe is the correct answer. Developing possible solutions would be easier than spending hours researching or identifying the need.
Answer:
7 deg
Explanation:
= mass of the rod = 
= weight of the rod = 
= spring constant for left spring = 
= spring constant for right spring = 
= stretch in the left spring
= stretch in the right spring
= length of the rod = 0.75 m
= Angle the rod makes with the horizontal
Using equilibrium of force in vertical direction for left spring

Using equilibrium of force in vertical direction for right spring

Angle made with the horizontal is given as
