Answer:
σ = 0.255*10^-3 C/m²
Explanation:
The Electric field Intensity act due to plate = σ/ε₀, where σ is surface charge density of plate.
At equilibrium ,
Upward force = downward force
Tcosθ = mg ----(1)
Assuming that the Forward force = backward force, then
Tsinθ = σq/ε₀
[ ∵ F = qE , ∴ F = qσ/ε₀ ] -----(2)
Dividing equation (2) by (1)
Tsinθ/Tcosθ = qσ/ε₀mg
⇒Tanθ = qσ/ε₀mg
σ = ε₀mg tanθ/q
Now substituting the values of
σ = (8.85*10^-12 * 1 * tan 30) / 2*10^-8
σ = (8.85*10^-12 * 0.5774) / 2*10^-8
σ = 5.11*10^-12 / 2*10^-8
σ = 0.255*10^-3 C/m²
Answer:
Net force acting on them is 16 N and it is acting to the right side.
Explanation:
It is given that,
Force acting by the dog,
(right side)
Force acting by Simone ,
(backward)
Let backward direction is taken to be negative while right side is taken to be positive.
The net force will act in the direction where the magnitude of force is maximum. Net force is given by :

F = 16 N
So, the net force is 16 N and it is acting to the right side.
It can be calculated using Boyle's Law. A.
Answer:
120V
Explanation:
Given parameters:
Current = 6A
Resistance = 20Ω
Unknown:
Voltage = ?
Solution:
According to ohms law;
V = IR
Where V is the voltage
I is the current
R is the resistance
Now, insert the parameters and solve;
V = 6 x 20 = 120V
Answer:
It took the projectile 120 s to reach the maximum height.
Explanation:
Given;
maximum height of the projectile, s = 180 km = 180,000 m
initial speed of the projectile, u = 3 km/s = 3000 m/s
final velocity at maximum height, v = 0
Apply the following kinematic equation for average velocity of the projectile;

Therefore, it took the projectile 120 s to reach the maximum height.