answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AnnyKZ [126]
2 years ago
12

Given three capacitors, c1 = 2.0 μf, c2 = 1.5 μf, and c3 = 3.0 μf, what arrangement of parallel and series connections with a 12

-v battery will give the minimum voltage drop across the 2.0-μf capacitor?
Physics
1 answer:
Lesechka [4]2 years ago
6 0

Answer:

Connect C₁ to C₃ in parallel; then connect C₂ to C₁ and C₂ in series. The voltage drop across C₁ the 2.0-μF capacitor will be approximately 2.76 volts.

-1.5\;\mu\text{F}-[\begin{array}{c}-{\bf 2.0\;\mu\text{F}}-\\-3.0\;\mu\text{F}-\end{array}]-.

Explanation:

Consider four possible cases.

<h3>Case A: 12.0 V.</h3>

-\begin{array}{c}-{\bf 2.0\;\mu\text{F}-}\\-1.5\;\mu\text{F}- \\-3.0\;\mu\text{F}-\end{array}-

In case all three capacitors are connected in parallel, the 2.0\;\mu\text{F} capacitor will be connected directed to the battery. The voltage drop will be at its maximum: 12 volts.

<h3>Case B: 5.54 V.</h3>

-3.0\;\mu\text{F}-[\begin{array}{c}-{\bf 2.0\;\mu\text{F}}-\\-1.5\;\mu\text{F}-\end{array}]-

In case the 2.0\;\mu\text{F} capacitor is connected in parallel with the 1.5\;\mu\text{F} capacitor, and the two capacitors in parallel is connected to the 3.0\;\mu\text{F} capacitor in series.

The effective capacitance of two capacitors in parallel is the sum of their capacitance: 2.0 + 1.5 = 3.5 μF.

The reciprocal of the effective capacitance of two capacitors in series is the sum of the reciprocals of the capacitances. In other words, for the three capacitors combined,

\displaystyle C(\text{Effective}) = \frac{1}{\dfrac{1}{C_3}+ \dfrac{1}{C_1+C_2}} = \frac{1}{\dfrac{1}{3.0}+\dfrac{1}{2.0+1.5}} = 1.62\;\mu\text{F}.

What will be the voltage across the 2.0 μF capacitor?

The charge stored in two capacitors in series is the same as the charge in each capacitor.

Q = C(\text{Effective}) \cdot V = 1.62\;\mu\text{F}\times 12\;\text{V} = 19.4\;\mu\text{C}.

Voltage is the same across two capacitors in parallel.As a result,

\displaystyle V_1 = V_2 = \frac{Q}{C_1+C_2} = \frac{19.4\;\mu\text{C}}{3.5\;\mu\text{F}} = 5.54\;\text{V}.

<h3>Case C: 2.76 V.</h3>

-1.5\;\mu\text{F}-[\begin{array}{c}-{\bf 2.0\;\mu\text{F}}-\\-3.0\;\mu\text{F}-\end{array}]-.

Similarly,

  • the effective capacitance of the two capacitors in parallel is 5.0 μF;
  • the effective capacitance of the three capacitors, combined: \displaystyle C(\text{Effective}) = \frac{1}{\dfrac{1}{C_2}+ \dfrac{1}{C_1+C_3}} = \frac{1}{\dfrac{1}{1.5}+\dfrac{1}{2.0+3.0}} = 1.15\;\mu\text{F}.

Charge stored:

Q = C(\text{Effective}) \cdot V = 1.15\;\mu\text{F}\times 12\;\text{V} = 13.8\;\mu\text{C}.

Voltage:

\displaystyle V_1 = V_3 = \frac{Q}{C_1+C_3} = \frac{13.8\;\mu\text{C}}{5.0\;\mu\text{F}} = 2.76\;\text{V}.

<h3 /><h3>Case D: 4.00 V</h3>

-2.0\;\mu\text{F}-1.5\;\mu\text{F}-3.0\;\mu\text{F}-.

Connect all three capacitors in series.

\displaystyle C(\text{Effective}) = \frac{1}{\dfrac{1}{C_1} + \dfrac{1}{C_2}+\dfrac{1}{C_3}} =\frac{1}{\dfrac{1}{2.0} + \dfrac{1}{1.5}+\dfrac{1}{3.0}} =0.667\;\mu\text{F}.

For each of the three capacitors:

Q = C(\text{Effective})\cdot V = 0.667\;\mu\text{F} \times 12\;\text{V} = 8.00\;\mu\text{C}.

For the 2.0\;\mu\text{F} capacitor:

\displaystyle V_1=\frac{Q}{C_1} = \frac{8.00\;\mu\text{C}}{2.0\;\mu\text{F}} = 4.0\;\text{V}.

You might be interested in
Alex goes cruising on his dirt bike. He rides 700m north, 300m east, 400 m north, 600m west, 1200m south, 300m east and finally
Bess [88]

Find Displacement and Distance

displacement ...

north is 700+400+100 =1200m n

south=1200m

1200-1200=0


east is 300+300=600m

west is 600m

600-600=0

back at dtart. displ zero


distance is 700+ 300m + 400 m + 600m + 1200m + 300m + 100m  = 3600m


3 0
2 years ago
The force F required to compress a spring a distance x is given by F 2 F0 5 kx where k is the spring constant and F0 is the prel
IrinaVladis [17]

Answer:

a)W=8.333lbf.ft

b)W=0.0107 Btu.

Explanation:

<u>Complete question</u>

The force F required to compress a spring a distance x is given by F– F0 = kx where k is the spring constant and F0 is the preload. Determine the work required to compress a spring whose spring constant is k= 200 lbf/in a distance of one inch starting from its free length where F0 = 0 lbf. Express your answer in both lbf-ft and Btu.

Solution

Preload = F₀=0 lbf

Spring constant k= 200 lbf/in

Initial length of spring x₁=0

Final length of spring x₂= 1 in

At any point, the force during deflection of a spring is given by;

F= F₀× kx  where F₀ initial force, k is spring constant and x is the deflection from original point of the spring.

W=\int\limits^2_1 {} \, Fds \\\\\\W=\int\limits^2_1( {F_0+kx} \,) dx \\\\\\W=\int\limits^a_b {kx} \, dx ; F_0=0\\\\\\W=k\int\limits^2_1 {x} \, dx \\\\\\W=k*\frac{1}{2} (x_2^{2}-x_1^{2}  )\\\\\\W=200*\frac{1}{2} (1^2-0)\\\\\\W=100.lbf.in\\\\

Change to lbf.ft by dividing the value by 12 because 1ft=12 in

100/12 = 8.333 lbf.ft

work required to compress the spring, W=8.333lbf.ft

The work required to compress the spring in Btu will be;

1 Btu= 778 lbf.ft

?= 8.333 lbf.ft----------------cross multiply

(8.333*1)/ 778 =0.0107 Btu.

6 0
2 years ago
When laser light of wavelength 632.8 nm passes through a diffraction grating, the first bright spots occur at ± 17.8 ∘ from the
bazaltina [42]
Look on this website http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/sinslit.html
4 0
2 years ago
Explain why the motto "Do whatever it takes to win!" may not be an ethical guideline to follow.
Murrr4er [49]
If you did this then it could lead to cheating or someone else getting hurt.
4 0
2 years ago
Read 2 more answers
A 10.0 cm3 sample of copper has a mass of 89.6
Romashka-Z-Leto [24]
Density is mass divides by volume, so
89.6g / 10cm^3 =8.96g /cm^3

*cm^3 is a standard unit of volume*
4 0
2 years ago
Other questions:
  • Rod A and rod B are cylindrical rods made of the same metal. amd they differ only in size. Rod B has double the length and doubl
    14·2 answers
  • A compact, dense object with a mass of 2.90 kg is attached to a spring and is able to oscillate horizontally with negligible fri
    13·1 answer
  • A cyclotron particle accelerator (sometimes called an “atom smasher” in the popular press) is a device for accelerating charged
    9·1 answer
  • Recent findings in astrophysics suggest that the observable universe can be modeled as a sphere of radius R = 13.7 × 109 light-y
    13·1 answer
  • A 2 kg stone moves with a speed of 1 m/s. A second 2 kg stone is moving twice as fast. Compare their kinetic energies.
    6·2 answers
  • A small glider is coasting horizontally when suddenly a very heavy piece of cargo falls out of the bottom of the plane.
    11·1 answer
  • A child pushes a 75 N toy car across the floor. What is the mass of the car?
    6·1 answer
  • Hydrogen peroxide is sold commercially as an aqueous solution in brown bottles to protect it from light. Calculate the longest w
    6·2 answers
  • To practice Problem-Solving Strategy 17.1 for wave interference problems. Two loudspeakers are placed side by side a distance d
    13·1 answer
  • On the image at right, the two magnets are the same. Which paper clip would be harder to remove?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!