answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natali5045456 [20]
1 year ago
7

As a space shuttle moves through the dilute ionized gas of Earth's ionosphere, the shuttle's potential is typically changed by -

1.1 V during one revolution. Assuming the shuttle is a conducting sphere of radius 10 m, estimate the amount of charge it collects.
Physics
1 answer:
Svetllana [295]1 year ago
8 0

Answer:

The amount of charge the space shuttle collects is -1.224nC

Explanation:

The magnitude of Electric potential is given as;

V = kq/r

where;

V is the electric potential in volts

k is coulomb's constant

r is the radius of the sphere or distance moved by the charge

given;  V = -1.1 V, k = 8.99 x 10⁹ Nm²/C², r = 10m

Substituting this values in the above equation, we estimate the amount of charge space shuttle collects.

q = (V*r)/k

q = (-1.1 *10)/(8.99 x 10⁹ )

q = -1.224 X 10⁻⁹ C

q = -1.224nC

Therefore, the amount of charge the space shuttle collects is -1.224nC

You might be interested in
A uniformly accelerated car passes three equally spaced traffic signs. The signs are separated by a distance d = 25 m. The car p
DedPeter [7]

Answer:

a) v_{1}=\frac{x_{2}-x_{1}  }{t_{2}-t_{1}  }=\frac{(2(\frac{25}{3})-\frac{25}{3} )m}{3.9s-1.3s}  =3.2051 \frac{m}{s}

b) v_{2}=\frac{x_{3}-x_{2}  }{t_{3}-t_{2}  }=\frac{(25-2(\frac{25}{3}) )m}{5.5s-3.9s}  =5.2083 \frac{m}{s}

c) a=\frac{v_{2}-v_{1}  }{t_{2}-t_{1}  } =\frac{5.2083m/s-3.2051m/s}{5.5s-3.9s} =1.252 \frac{m}{s^{2} }

Explanation:

<em><u>The knowable variables are </u></em>

d_{t}=25m

t_{1}=1.3 s

t_{2}=3.9 s

t_{3}=5.5 s

Since the three traffic signs are <u>equally spaced</u>, the <u>distance between each sign is \frac{25}{3} m</u>

a) v_{1}=\frac{x_{2}-x_{1}  }{t_{2}-t_{1}  }=\frac{(2(\frac{25}{3})-\frac{25}{3} )m}{3.9s-1.3s}  =3.2051 \frac{m}{s}

b) v_{2}=\frac{x_{3}-x_{2}  }{t_{3}-t_{2}  }=\frac{(25-2(\frac{25}{3}) )m}{5.5s-3.9s}  =5.2083 \frac{m}{s}

Since we know the velocity in two points and the time the car takes to pass the traffic signs

c) a=\frac{v_{2}-v_{1}  }{t_{2}-t_{1}  } =\frac{5.2083m/s-3.2051m/s}{5.5s-3.9s} =1.252 \frac{m}{s^{2} }

6 0
1 year ago
A 6-in-wide polyamide F-1 flat belt is used to connect a 2-in-diameter pulley to drive a larger pulley with an angular velocity
Likurg_2 [28]

Answer:

a) Fc = 4.15 N, Fi = 435.65 N, (F1)a = 640 N, and F2  = 239.6 N,

b) Ha = 1863.75 N, nfs = 1 , length = 11.8 mm

Explanation:

Given that:

γ= 9.5 kN/m³ = 9500N/m3

b = 6 inches = 0.1524 m

t = 0.0013 mm

d = 2 inches  = 0.0508 m

n = 1750 rpm

H_{nom}=2hp=1491.4W

L = 9 ft = 2.7432 m

Ks = 1.25

g = 9.81 m/s²

a)

w=\gamma b t = 9500* 0.1524*0.0013=1.88N/m

V=\frac{\pi d n}{60} =\pi *0.0508*1750/60=4.65 m/s

F_c=\frac{wV^2}{g}=1.88*4.65^2/9.81=4.15N

(F_1)_a=bF_aC_pC_v=0.1524*6000*0.7*1=640N

T=\frac{H_{nom}n_dK_s}{2\pi n}= \frac{1491*1.25*1}{2*\pi*1750/60}=10.17Nm

F_2=(F_1)_a-\frac{2T}{D}= 640-\frac{2*10.17}{0.0508} =239.6N

F_i=\frac{(F_1)_a+F_2}{2} -F_c=435.65N

b)

H_a=1491*1.25=1863.75W

n_f_s=\frac{H_a}{H_{nom}K_S }=1

dip = \frac{L^2w}{8F_i} =\frac{2.7432*1.88}{435.65}=11.8mm

7 0
1 year ago
How do you do projectile motion problems
PtichkaEL [24]
The key  projectile motion is that gravity allows downward only
7 0
2 years ago
Read 2 more answers
A certain satellite travels in an approximately circular orbit of radius 2.0 × 106 m with a period of 7 h 11 min. Calculate the
kap26 [50]

Answer: Mass of the planet, M= 8.53 x 10^8kg

Explanation:

Given Radius = 2.0 x 106m

Period T = 7h 11m

Using the third law of kepler's equation which states that the square of the orbital period of any planet is proportional to the cube of the semi-major axis of its orbit.

This is represented by the equation

T^2 = ( 4π^2/GM) R^3

Where T is the period in seconds

T = (7h x 60m + 11m)(60 sec)

= 25860 sec

G represents the gravitational constant

= 6.6 x 10^-11 N.m^2/kg^2 and M is the mass of the planet

Making M the subject of the formula,

M = (4π^2/G)*R^3/T^2

M = (4π^2/ 6.6 x10^-11)*(2×106m)^3(25860s)^2

Therefore Mass of the planet, M= 8.53 x 10^8kg

5 0
1 year ago
A cannon is mounted on a tower above a wide, level field. The barrel of the cannon is 20 m above the ground below. A cannonball
OLga [1]

<u>Answer:</u>

  Cannonball will be in flight before it hits the ground for 2.02 seconds

<u>Explanation:</u>

  Initial height from ground = 20 meter.

  We have equation of motion , s= ut+\frac{1}{2} at^2, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.

  In this the velocity of body in vertical direction = 0 m/s, acceleration = 9.8 m/s^2, we need to calculate time when s = 20 meter.

  Substituting

         20=0*t+\frac{1}{2} *9.8*t^2\\ \\ t = 2.02 seconds

  So it will take 2.02 seconds to reach ground.

5 0
1 year ago
Other questions:
  • A 16-kg scooter is moving at a speed of 7 m/s. The scooter’s speed doubles. What is the scooter’s kinetic energy when its speed
    5·1 answer
  • An 80 kg skateboarder moving at 3 m/s pushes off with her back foot to move faster. If her velocity increases to 5 m/s, what is
    14·2 answers
  • Water is pumped from a lower reservoir to a higher reservoir by a pump that provides 20 kW of shaft power. The free surface of t
    8·1 answer
  • You’ve been given the challenge of balancing a uniform, rigid meter-stick with mass M = 95 g on a pivot. Stacked on the 0-cm end
    11·1 answer
  • A rock with density 1900 kg/m3 is suspended from the lower end of a light string. When the rock is in air, the tension in the st
    7·1 answer
  • A simple harmonic wave of wavelength 18.7 cm and amplitude 2.34 cm is propagating along a string in the negative x-direction at
    7·1 answer
  • Waves are observed to splash upon the rocks at the shore every 6.0
    10·1 answer
  • A box of books with mass 58 kg rests on the level floor of the campus bookstore. The floor is freshly waxed and has negligible f
    6·1 answer
  • If you're swimming underwater and knock two rocks together, you will hear a very loud noise. But if your friend above the water
    7·1 answer
  • For the first 10 seconds a squirrel runs 3 m/s to look for an acorn. The next 5 seconds he eats an acorn that he finds. Afterwar
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!