Would presume you are asked to find the volume, since there is no second volume.
By General Gas Law:
P₁V₁/T₁ = P₂V₂/T₂
1.6 * 168 /255 = 1.3*V₂/285
V₂ = 1.6 * 168 * 285 / (1.3*255)
V₂ = 231.095
Final volume ≈ 231 cm³
Answer:
V₂ = 1.5 m/s
Explanation:
given,
speed of the first piece = 6 m/s
speed of the third piece = 3 m/s
speed of the second fragment = ?
mass ratios = 1 : 4 : 2
fragment break fly off = 120°
α = β = γ = 120°
sin α = sin β = sin γ = 0.866
using lammi's theorem

A,B and C is momentum of the fragments

4 x V₂ = 2 x 3
V₂ = 1.5 m/s
Answer:
v_f = 17.4 m / s
Explanation:
For this exercise we can use conservation of energy
starting point. On the hill when running out of gas
Em₀ = K + U = ½ m v₀² + m g y₁
final point. Arriving at the gas station
Em_f = K + U = ½ m v_f ² + m g y₂
energy is conserved
Em₀ = Em_f
½ m v₀ ² + m g y₁ = ½ m v_f ² + m g y₂
v_f ² = v₀² + 2g (y₁ -y₂)
we calculate
v_f ² = 20² + 2 9.8 (10 -15)
v_f = √302
v_f = 17.4 m / s
Answer:
longer than
Explanation:
given,
time of nap = 10 min
speed of orbiting earth = 8000 m/s
c is the speed of light
using the equation of time dilation

now inserting all the values


t' = 10.001 s
on solving the above equation we will get a value greater than 10minutes.
hence, On earth time of nap measured will be longer than 10 min
Answer:

Explanation:
Capacitance C is given by

A= area of capacitor cross section
d= distance
therefore,

A_1= πR^2
d_1= d

A_= π(2R)^2
d_2 = 2d

threfore

and

also we know that E= V/d
⇒
⇒
= A_1/A_2=
=4
therefore,
