To solve this problem it is necessary to apply the concepts related to Newton's second law and the kinematic equations of movement description.
Newton's second law is defined as

Where,
m = mass
a = acceleration
From this equation we can figure the acceleration out, then



From the cinematic equations of motion we know that

Where,
Final velocity
Initial velocity
a = acceleration
x = displacement
There is not Final velocity and the acceleration is equal to the gravity, then





From the equation of motion where acceleration is equal to the velocity in function of time we have




Therefore the time required is 0.0705s
Answer:
Amplitude, A = 0.049 meters
Explanation:
Given that,
A harmonic wave travels in the positive x direction at 6 m/s along a taught string. A fixed point on the string oscillates as a function of time according to the equation :
.......(1)
The general equation of a wave is given by :
.......(2)
A is amplitude of wave
On comparing equation (1) and (2) we get :
A = 0.049 meters
So, the amplitude of the wave is 0.049 meters.
Answer: yes.
Explanation: The light that will be incidented on that metal is visible light.
It depends on 3 factors:
1. The temperature
2. The specific heat capacity of the metal
3. The thermal conductivity of the metal.
The metal getting warmer also depend on the reflection and the absorption of light energy in which it will surely absorb some energy and not reflect all.
When visible light is absorbed by an object, the object converts the short wavelength light into long wavelength heat. This causes the object to get warmer.
Answer
The answer and procedures of the exercise are attached in the following archives.
Step-by-step explanation:
You will find the procedures, formulas or necessary explanations in the archive attached below. If you have any question ask and I will aclare your doubts kindly.
Answer:
Explanation:
Given that,
Spring constant = 16N/m
Extension of spring
x = 8cm = 0.08m
Mass
m = 5g =5/1000 = 0.005 kg
The ball will leave with a speed that makes its kinetic energy equal to the potential energy of the compressed spring.
So, Using conservation of energy
Energy in spring is converted to kinectic energy
So, Ux = K.E
Ux = ½ kx²
Then,
Ux = ½ × 16 × 0.08m²
Ux = 0.64 J
Since, K.E = Ux
K.E = 0.64 J