answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vera_Pavlovna [14]
2 years ago
13

A gas has an initial volume of 168 cm3 at a temperature of 255 K and a pressure of 1.6 atm. The pressure of the gas decreases to

1.3 atm, and the temperature of the gas increases to 285 K.
Physics
2 answers:
erastovalidia [21]2 years ago
7 0
Would presume you are asked to find the volume, since there is no second volume.

By General Gas Law:

P₁V₁/T₁ = P₂V₂/T₂

1.6 * 168 /255 = 1.3*V₂/285

V₂ = 1.6 * 168 * 285 / (1.3*255)

V₂ = 231.095

Final volume ≈ 231 cm³
allsm [11]2 years ago
5 0

Answer: The final volume is  231cm^3

Explanation: Using ideal gas equation:

\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}

P_1= initial pressure = 1.6 atm

V_1= initial volume = 168cm^3

T_1= initial temperature = 255 K

P_2= final pressure= 1.3 atm

V_2= final volume = ?

T_2= final temperature = 285 K

\frac{1.6\times 168}{255}=\frac{1.3\times V_2}{285}

V_2=231cm^3


You might be interested in
|| Climbing ropes stretch when they catch a falling climber, thus increasing the time it takes the climber to come to rest and r
Otrada [13]

To solve this problem it is necessary to apply the concepts related to Newton's second law and the kinematic equations of movement description.

Newton's second law is defined as

F = ma

Where,

m = mass

a = acceleration

From this equation we can figure the acceleration out, then

a = \frac{F}{m}

a = \frac{11*10^3}{80}

a = 137.5m/s

From the cinematic equations of motion we know that

v_f^2-v_i^2 = 2ax

Where,

v_f =Final velocity

v_i =Initial velocity

a = acceleration

x = displacement

There is not Final velocity and the acceleration is equal to the gravity, then

v_f^2-v_i^2 = 2ax

0-v_i^2 = 2(-g)x

v_i =\sqrt{2gx}

v_i = \sqrt{2*9.8*4.8}

v_i = 9.69m/s

From the equation of motion where acceleration is equal to the velocity in function of time we have

a = \frac{v_i}{t}

t = \frac{v_i}{a}

t =\frac{9.69}{137.5}

t = 0.0705s

Therefore the time required is 0.0705s

4 0
2 years ago
Read 2 more answers
A harmonic wave travels in the positive x direction at 6 m/s along a taught string. A fixed point on the string oscillates as a
Lapatulllka [165]

Answer:

Amplitude, A = 0.049 meters

Explanation:

Given that,

A harmonic wave travels in the positive x direction at 6 m/s along a taught string. A fixed point on the string oscillates as a function of time according to the equation :

y = 0.049 \cos(7t) .......(1)

The general equation of a wave is given by :

y=A\cos(\omega t) .......(2)

A is amplitude of wave

On comparing equation (1) and (2) we get :

A = 0.049 meters

So, the amplitude of the wave is 0.049 meters.

3 0
2 years ago
Tyrel is learning about a certain kind of metal used to make satellites. He learns that infrared light is absorbed by the metal,
VARVARA [1.3K]

Answer: yes.

Explanation: The light that will be incidented on that metal is visible light.

It depends on 3 factors:

1. The temperature

2. The specific heat capacity of the metal

3. The thermal conductivity of the metal.

The metal getting warmer also depend on the reflection and the absorption of light energy in which it will surely absorb some energy and not reflect all.

When visible light is absorbed by an object, the object converts the short wavelength light into long wavelength heat. This causes the object to get warmer. 

6 0
2 years ago
When a particle is a distance r from the origin, its potential energy function is given by the equation U(r)=kr, where k is a co
Reika [66]

Answer

The answer and procedures of the exercise are attached in the following archives.

Step-by-step explanation:

You will find the procedures, formulas or necessary explanations in the archive attached below. If you have any question ask and I will aclare your doubts kindly.  

5 0
2 years ago
A spring-powered dart gun is unstretched and has a spring constant 16.0 N/m. The spring is compressed by 8.0 cm and a 5.0 gram p
stepladder [879]

Answer:

Explanation:

Given that,

Spring constant = 16N/m

Extension of spring

x = 8cm = 0.08m

Mass

m = 5g =5/1000 = 0.005 kg

The ball will leave with a speed that makes its kinetic energy equal to the potential energy of the compressed spring.

So, Using conservation of energy

Energy in spring is converted to kinectic energy

So, Ux = K.E

Ux = ½ kx²

Then,

Ux = ½ × 16 × 0.08m²

Ux = 0.64 J

Since, K.E = Ux

K.E = 0.64 J

4 0
1 year ago
Other questions:
  • Suppose the door of a room makes an airtight but frictionless fit in its frame. Do you think you could open the door if the air
    9·1 answer
  • Steve and Elsie are camping in the desert, but have decided to part ways. Steve heads north, at 8 AM, and walks steadily at 2 mi
    5·1 answer
  • Which statement corresponds to emission spectra?
    7·1 answer
  • What frequency is received by a person watching an oncoming ambulance moving at 110 km/h and emitting a steady 800-Hz sound from
    15·1 answer
  • An object initially at rest experiences a constant horizontal acceleration due to the action of a resultant force applied for 10
    15·1 answer
  • A ball is fired at an angle of 45 degrees, the angle that yields the maximum range in the absence of air resistance. What is the
    6·2 answers
  • Does a fish appear closer or farther from a person wearing swim goggles with an air pocket in front of their eyes than the fish
    8·1 answer
  • Adwoa received a commission of 20% on bread she sold. In 1 week Adwoa's commission 540.
    6·1 answer
  • A rocket lifts a payload upward from the surface of Earth. The radius of Earth is R, and the weight of the payload on the surfac
    10·1 answer
  • A student measured the density of Galena to be 7.9g/cm3 however the known density of Galena is 7.6g/cm3 . Calculate the percent
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!