Answer:
3 hours
Explanation:
Given:
- The speed of Ben v_b = 3 mi/h
- The speed of Amanda v_a = 6 mi/h
- The total time taken to cover distance(d) by ben = t_b
Find:
How long will it be before Amanda catches up to Ben?
Solution:
- The distance d traveled by Ben:
d = v_b*t_b
d = 3*t_b
- The distance d traveled by Amanda:
d = v_a*t_a
d = 6*t_a
- Equate the distance as when they meet:
3*t_b = 6*t_a
- Where ,
t_b = t_a + 1.5
t_a = t_b - 1.5
- Substitute the time relationship in distance relationship:
3*t_b = 6*(t_b - 1.5)
3*t_b = 6*1.5
t_b = 2*1.5 = 3 h
- Hence, It would take 3 hours since Ben starts walking that amanda catches up.
Answer:
So the acceleration of the child will be 
Explanation:
We have given angular speed of the child 
Radius r = 4.65 m
Angular acceleration 
We know that linear velocity is given by 
We know that radial acceleration is given by 
Tangential acceleration is given by

So total acceleration will be 
Answer:
I = 16 kg*m²
Explanation:
Newton's second law for rotation
τ = I * α Formula (1)
where:
τ : It is the moment applied to the body. (Nxm)
I : it is the moment of inertia of the body with respect to the axis of rotation (kg*m²)
α : It is angular acceleration. (rad/s²)
Kinematics of the wheel
Equation of circular motion uniformly accelerated :
ωf = ω₀+ α*t Formula (2)
Where:
α : Angular acceleration (rad/s²)
ω₀ : Initial angular speed ( rad/s)
ωf : Final angular speed ( rad
t : time interval (rad)
Data
ω₀ = 0
ωf = 1.2 rad/s
t = 2 s
Angular acceleration of the wheel
We replace data in the formula (2):
ωf = ω₀+ α*t
1.2= 0+ α*(2)
α*(2) = 1.2
α = 1.2 / 2
α = 0.6 rad/s²
Magnitude of the net torque (τ )
τ = F *R
Where:
F = tangential force (N)
R = radio (m)
τ = 80 N *0.12 m
τ = 9.6 N *m
Rotational inertia of the wheel
We replace data in the formula (1):
τ = I * α
9.6 = I *(0.6
)
I = 9.6 / (0.6
)
I = 16 kg*m²
Answer:D
Explanation:
Given
mass of object 
Distance traveled 
velocity acquired 
conserving Energy at the moment when object start falling and when it gains 12 m/s velocity
Initial Energy
Final Energy

where
is friction work if any


Since Friction is Present therefore it is a case of Open system and net external Force is zero
An open system is a system where exchange of energy and mass is allowed and Friction is acting on the object shows that system is Open .
Answer:
false.
Explanation:
Ok, we define average velocity as the sum of the initial and final velocity divided by two.
Remember that the velocity is a vector, so it has a direction.
Then when she goes from the 1st end to the other, the velocity is positive
When she goes back, the velocity is negative
if both cases the magnitude of the velocity, the speed, is the same, then the average velocity is:
AV = (V + (-V))/2 = 0
While the average speed is the quotient between the total distance traveled (twice the length of the pool) and the time it took to travel it.
So we already can see that the average velocity will not be equal to half of the average speed.
The statement is false