If you don't wear a helmet and let's say you fell off your bike, you can severely injure your head! But if you DO wear a helmet and you fell off your bike, there's about I predict a 98% chance that you won't injure but sometimes it's 100%
hope this helps!<span />
Answer:
a) diffraction
Explanation:
Diffraction occurs when waves pass through small openings, around obstacles or sharp edges.When an opaque object is between the point of light and a screen, the border between the shaded and illuminated regions on the screen is not defined. A careful inspection of the scrubber shows that a small amount of light is diverted to the shaded region. The region outside the shadow contains bright and dark altered bands, where the intensity of the first band is brighter than the region of uniform illumination.
Answer:

Explanation:
Given that:
Absolute temperature of the body, 
- emissivity of the body,

<u>Using Stefan Boltzmann Law of thermal radiation:</u>

where:
(Stefan Boltzmann constant)
Now putting the respective values:


Note:
The height of a high bar from the floor is h = 2.8 m (or 9.1 ft).
It is not provided in the question, so the standard height is assumed.
g = 9.8 m/s², acceleration due to gravity.
Note that the velocity and distance are measured as positive upward.
Therefore the floor is at a height of h = -2.8 m.
First dismount:
u = 4.0 m/s, initial upward velocity.
Let v = the velocity when the gymnast hits the floor.
Then
v² = u² - 2gh
v² = 16 - 2*9.8*(-2.8) = 70.88
v = 8.42 m/s
Second dismount:
u = -3.0 m/s
v² = (-3.0)² - 2*9.8*(-2.8) = 63.88 m/s
v = 7.99 m/s
The difference in landing velocities is 8.42 - 7.99 = 0.43 m/s.
Answer:
First dismount:
Acceleration = 9.8 m/s² downward
Landing velocity = 8.42 m/s downward
Second dismount:
Acceleration = 9.8 m/s² downward
Landing velocity = 7.99 m/s downward
The landing velocities differ by 0.43 m/s.
The correct answer is Option C) Sample C would be best, because the percentage of the energy in an incident wave that remains in a reflected wave from this material is the smallest.
As the coefficient of absorption would define the energy present in the reflected wave, the material C has the highest percentage of absorption i.e. 62% and would be best suitable to make a sound proof room.