answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bearhunter [10]
2 years ago
8

An air-filled 20-μf capacitor has a charge of 60 μc on its plates. how much energy is stored in this capacitor?

Physics
1 answer:
Triss [41]2 years ago
3 0

Thew energy stored in a capacitor of capacitance C and voltage between the plates V is

E=\frac{1}{2} CV^2=\frac{1}{2C} Q^2.

Substituting numerical value

E=\frac{1}{2*20*10^{-6}} (60*10^{-6})^2\\ E=90\; \mu J

You might be interested in
A simple watermelon launcher is designed as a spring with a light platform for the watermelon. When an 8.00 kg watermelon is put
olga_2 [115]

To solve this problem it is necessary to apply the concepts related to the Force from Hooke's law, the force since Newton's second law and the potential elastic energy.

Since the forces are balanced the Spring force is equal to the force of the weight that is

F_s = F_g

kx = mg

Where,

k = Spring constant

x = Displacement

m = Mass

g = Gravitational Acceleration

Re-arrange to find the spring constant

k = \frac{mg}{x}

k = \frac{8*9.8}{0.1}

k = 784N/m

Just before launch the compression is 40cm, then from Potential Elastic Energy definition

PE = \frac{1}{2} kx^2

PE =\frac{1}{2} 784*0.4^2

PE = 63.72J

Therefore the energy stored in the spring is 63.72J

6 0
2 years ago
A rigid vessel of 0.06 m3 volume contains an ideal gas , CV =2.5R, at 500K and 1 bar.a). if 15000J heat is transferred to the ga
andreev551 [17]

Answer:

Given that

V= 0.06 m³

Cv= 2.5 R= 5/2 R

T₁=500 K

P₁=1 bar

Heat addition = 15000 J

We know that heat addition at constant volume process ( rigid vessel ) given as

Q = n Cv ΔT

We know that

P V = n R T

n=PV/RT

n= (100 x 0.06)(500 x 8.314)

n=1.443 mol

So

Q = n Cv ΔT

15000 = 1.433 x 2.5 x 8.314 ( T₂-500)

T₂=1000.12 K

We know that at constant volume process

P₂/P₁=T₂/T₁

P₂/1 = 1000.21/500

P₂= 2 bar

Entropy change given as

\Delta S=nC_P\ln \dfrac{T_2}{T_1}-nR\ln \dfrac{P_2}{P_1}

Cp-Cv= R

Cp=7/2 R

Now by putting the values

\Delta S=nC_P\ln \dfrac{T_2}{T_1}-nR\ln \dfrac{P_2}{P_1}

\Delta S=1.443\times 3.5\times 8.314\ln \dfrac{1000.21}{500}-1.443\times 8.314\ln \dfrac{2}{1}

a)ΔS= 20.79 J/K

b)

If the process is adiabatic it means that heat transfer is zero.

So

ΔS= 20.79 J/K

We know that

\Delta S_{univ}=\Delta S_{syatem}+\Delta S_{surr}

Process is adiabatic

\Delta S_{surr}=0

\Delta S_{univ}=\Delta S_{syatem}+\Delta S_{surr}

\Delta S_{univ}= 20.79 +0

\Delta S_{univ}= 20.79

3 0
2 years ago
Voices of swimmers at a pool travel 400 m/s through the air and 1,600 m/s underwater. The wavelength changes from 2 m in the air
frosja888 [35]

The frequency of the wave has not changed.

In fact, the frequency of a wave is given by:

f=\frac{v}{\lambda}

where v is the wave's speed and \lambda is the wavelength.

Applying the formula:

- In air, the frequency of the wave is:

f=\frac{400 m/s}{2 m}=200 Hz

- underwater, the frequency of the wave is:

f=\frac{1600 m/s}{8 m}=200 Hz

So, the frequency has not changed.

3 0
2 years ago
Read 2 more answers
A conducting sphere of radius 5.0 cm carries a net charge of 7.5 µC. What is the surface charge density on the sphere?
11111nata11111 [884]

Answer:

\sigma=0.014\ C/m^2

Explanation:

Given that,

The radius of sphere, r = 5 cm = 0.05 m

Net charge carries, q = 7.5 µC = 7.5 × 10⁻⁶ C

We need to find the surface charge density on the sphere. Net charge per unit area is called the surface charge density. So,

\sigma=\dfrac{7.5\times 10^{-6}}{\dfrac{4}{3}\pi \times (0.05)^3}\\\\=0.014\ C/m^2

So, the surface charge density on the sphere is 0.014\ C/m^2.

7 0
2 years ago
3. What conclusion can you make about the electric field strength between two parallel plates? Explain your answer referencing P
KIM [24]

Answer:

From the relation above we can conclude that the  as the distance between the two plate increases the electric field strength decreases

Explanation:

I cannot  find any attached photo, but we can proceed anyways theoretically.

The electric field strength (E) at any point in an electric field is the force experienced by a unit positive charge (Q) at that point

i.e

E=\frac{F}{Q}

But the force F

F= \frac{kQ1Q2}{r^2}

But the electric field intensity due to a point charge Q at a distance r meters away is given by

E= \frac{\frac{kQ1Q2}{r^2}}{Q} \\\\\E= \frac{Q1}{4\pi er^2 }

<em>From the relation above we can conclude that the  as the distance between the two plate increases the electric field strength decreases</em>

6 0
2 years ago
Other questions:
  • What is the magnitude of the force acting on a spring with a spring constant of 275 N/m that is stretched 14.3 cm?
    13·1 answer
  • A doctor travels to the east from city a to city b 75 km in 1.0h and returns back in another hour
    10·1 answer
  • What type of light does this light bulb produce most (i.e. at what wavelength does the spectrum have maximum intensity)?
    7·1 answer
  • On a hypothetical scale X The ice point is 40° and steam point is 120°.
    12·1 answer
  • A turtle takes 3.5 minutes to walk 18 m toward the south along a deserted highway. A truck driver stops and picks up the turtle.
    11·1 answer
  • In a power plant, pipes transporting superheated vapor are very common. Superheated vapor flows at a rate of 0.3 kg/s inside a p
    6·1 answer
  • Determine the magnitude of force F so that the resultant FR of the three forces is as small as possible.
    11·1 answer
  • A ping-pong ball weighs 0.025 N. The ball is placed inside a cup that sits on top of a vertical spring. If the spring is compres
    6·1 answer
  • Suppose that at room temperature, a certain aluminum bar is 1.0000 m long. The bar gets longer when its temperature is raised. T
    14·1 answer
  • A toroidal solenoid has an inner radius of 12.0 cm and an outer radius of 15.0 cm . It carries a current of 1.50 A . Part A How
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!