This is a free fall and in free fall we use this formula:
d = (1 ÷ 2) × g × t², where d is the distance, g is the gravitational acceleration and t is the time.
In our case,
We are already given the moon's gravitational acceleration and we are going to substitute it with g. Let's leave the unknown alone, which is t.
t = √(2d ÷ g)
If we perform the formula, t is found to be √(2d ÷ g) = √(2 × 1.2 ÷ 1.62) ≅ 1.217 s
I am sorry for my bad English and if there is anything that you do not understand please let me know.
Answer:

Explanation:
= number of polarizers through which light pass through = 5
= Angle between each pair of adjacent polarizers
= Intensity of unpolarized light
= Intensity of transmitted beam after passing all polarizers
It is given that

we know that the intensity of light after passing through "n" polarizers is given as


inserting the values





Answer:
A) If one travels around a closed path adding the voltages for which one enters the negative reference and subtracting the voltages for which one enters the positive reference, the total is zero.
Explanation:
Kirchhoff's voltage law deals with the conservation of energy when the current flows in a closed-loop path.
It states that the algebraic sum of the voltages around any closed loop in a circuit is always zero.
In other words, the algebraic sum of all the potential differences through a loop must be equal to zero.
It would change the sign on the vector quantities and have no change to the scalar quantities
Answer:
torque is 1.7 *
Nm
Explanation:
Given data
turns n = 1000 turns
radius r = 12 cm
current I = 15A
magnitude B = 5.8 x 10^-5 T
angle θ = 25°
to find out
the torque on the loop
solution
we know that torque on the loop is
torque = N* I* A*B* sinθ
here area A = πr² = π(0.12)²
put all value
torque = N* I* A*B* sinθ
torque = 1000* 15* π(0.12)² *5.8 x 10-5 * sin25
torque = 0.0166 N m
torque is 1.7 *
Nm