Anything that's moving in a straight line at a constant speed has zero acceleration, and that tells us that there is zero net force acting on it.
Answer:
torque is 1.7 *
Nm
Explanation:
Given data
turns n = 1000 turns
radius r = 12 cm
current I = 15A
magnitude B = 5.8 x 10^-5 T
angle θ = 25°
to find out
the torque on the loop
solution
we know that torque on the loop is
torque = N* I* A*B* sinθ
here area A = πr² = π(0.12)²
put all value
torque = N* I* A*B* sinθ
torque = 1000* 15* π(0.12)² *5.8 x 10-5 * sin25
torque = 0.0166 N m
torque is 1.7 *
Nm
To solve this problem it is necessary to apply the concepts related to Newton's second law and the kinematic equations of movement description.
Newton's second law is defined as

Where,
m = mass
a = acceleration
From this equation we can figure the acceleration out, then



From the cinematic equations of motion we know that

Where,
Final velocity
Initial velocity
a = acceleration
x = displacement
There is not Final velocity and the acceleration is equal to the gravity, then





From the equation of motion where acceleration is equal to the velocity in function of time we have




Therefore the time required is 0.0705s
Answer
The Value of r = 0.127
Explanation:
The mathematical representation of the two resistors connected in series is

And from Ohm law


The mathematical representation of the two resistors connected in parallel is


From the question 
=> 
Dividing equation 2 with equation 1
=> 

We are told that 
From equation 3



Using the quadratic formula

a = 1 b = -8 c =1



Now r = 0.127 because it is the least value among the obtained values
In a circular motion scenario, the force that pulls the revolving object towards the centre is the force that produces the centripetal acceleration. So, in this case, the tension on the string is the force that pulls the puck towards the centre.
Therefore, it is the tension in the string that causes the centripetal acceleration of the puck
Hope I helped!! xx