Answer:
A). A virtual image cannot be formed on a screen.
Explanation:
A virtual image can not be formed on a screen.
For image:
1.A virtual image can be viewed by the unaided eye.
2. A real image must be erect or maybe inverted.
3.Mirrors can produce virtual as well as real image ,it depends on which type of mirror is.
4.A virtual image can be photographed.
So the option A is correct.
Answer:
d = 380 feet
Explanation:
Height of man = perpendicular= 130 feet
Angle of depression = ∅ = 70 °
distance to bus stop from man = hypotenuse = d = 130 sec∅
As sec ∅ = 1 / cos∅
so d = 130 sec∅ or d = 130 / cos∅
d = 130 / cos(70°)
d = 380 feet
Answer:
6 m/s is the missing final velocity
Explanation:
From the data table we extract that there were two objects (X and Y) that underwent an inelastic collision, moving together after the collision as a new object with mass equal the addition of the two original masses, and a new velocity which is the unknown in the problem).
Object X had a mass of 300 kg, while object Y had a mass of 100 kg.
Object's X initial velocity was positive (let's imagine it on a horizontal axis pointing to the right) of 10 m/s. Object Y had a negative velocity (imagine it as pointing to the left on the horizontal axis) of -6 m/s.
We can solve for the unknown, using conservation of momentum in the collision: Initial total momentum = Final total momentum (where momentum is defined as the product of the mass of the object times its velocity.
In numbers, and calling
the initial momentum of object X and
the initial momentum of object Y, we can derive the total initial momentum of the system: 
Since in the collision there is conservation of the total momentum, this initial quantity should equal the quantity for the final mometum of the stack together system (that has a total mass of 400 kg):
Final momentum of the system: 
We then set the equality of the momenta (total initial equals final) and proceed to solve the equation for the unknown(final velocity of the system):

Answer:
Resistivity of both wires are same
Explanation:
Length of one wire,
Diameter,
Radius,




Temperature in each case is same.
Area of each wire,
Resistivity is the property of material due to which it offers resistance to the flow of current.
Resistivity of material depends upon the temperature and material by which it is made.
It does not depends upon the length of object.
Therefore, the resistivity of both wires of different length are same.
Answer:
The plate's surface charge density is 
Explanation:
Given that,
Speed = 9800 km/s
Distance d= 75 cm
Distance d' =15 cm
Suppose we determine the plate's surface charge density?
We need to calculate the surface charge density
Using work energy theorem


Here, final velocity is zero
...(I)
We know that,


...(II)
From equation (I) and (II)

Charge is negative for electron

Put the value into the formula


Hence, The plate's surface charge density is 