Answer:
This value is less than the maximum tension of 500 lbs, making it safe for man to go to the tip flap
Explanation:
We must work on this problem using the rotational equilibrium equations and then they compared the tension values that the cable supports.
Let's start with fixing a reference system on the hinge of the flag, we take as positive the anti-clockwise turn
They indicate the weight of the pole W₁ = 120 lb and a length of L = 9 ft, the weight of the man W₂ = 150, we assume that the cable is at the tip of the pole
-
L + W₂ L + W₁ L / 2 = 0
T_{y} = W₂ + W₁ / 2
T_{y} = 120 + 150/2
T_{y} = 195 lb
we use trigonometry to find the cable tension
sin 30 = T_{y} / T
T = T_{y} / sin 30
T = 195 / sin 30
T = 390 lb
This value is less than the maximum tension of 500 lbs, making it safe for man to go to the tip flap
T < 500 lb
There was no net force on the stuffed toy, because the kids might have the same strength, The same force is on both sides of it. T<span>hey cancel each other out. They exert a force on the stuffed toy equal in strength but opposite in direction. The forces are balanced and the stuffed toy does not move. </span>Its like a game of tug-o-war, but you and I have the same strength. the rope would be still and not moving.
Prior to touching the bar magnet, the magnetic domains in the nail were pointing in random directions. When Taylor touched the nail to the bar magnet the magnetic fields of the magnetic domains aligned and it became a temporary magnet.
Answer:twice of initial value
Explanation:
Given
spring compresses
distance for some initial speed
Suppose v is the initial speed and k be the spring constant
Applying conservation of energy
kinetic energy converted into spring Elastic potential energy

When speed doubles

divide 1 and 2


Therefore spring compresses twice the initial value
Answer:

Explanation:
The weekly water consumption of Kimonoski is:






The total energy required per week for hot water is:


