Incomplete question.The complete question is here
Determine the torque applied to the shaft of a car that transmits 225 hp and rotates at a rate of 3000 rpm.
Answer:
Torque=0.51 Btu
Explanation:
Given Data
Power=225 hp
Revolutions =3000 rpm
To find
T( torque )=?
Solution
As

As force moves an object through a distance, work is done on the object. Likewise, when a torque rotates an object through an angle, work is done.
So

From the starting depth to the surface, the vertical distance is 35 ft.
From the surface to the peak of the jump, the vertical distance is 27 ft.
From the peak of the jump to the surface, the vertical distance is 27 ft.
From the surface to the ending depth, the vertical distance is 18 ft.
Then the total vertical distance is ...
35 ft + 27 ft + 27 ft + 18 ft = 107 ft
Answer:
I am not a driver, but I think it's C.
Explanation:
When light hits the boundary between two different materials, it can undergo both reflection and refraction.
Reflection is the change in the direction of the
wave that strikes the boundary between two materials.<span> It involves a change in the direction of waves when they clash with an obstacle.
Refraction involves the change in the direction of waves as they move from one medium to </span><span><span>another followed</span></span><span> by a change in speed and wavelength (this second medium should have different permitivity for the light to change its initial properties.)</span>
Answer:

Explanation:
First calculate the mass of the asteroid. To do so, you need to find the volume and know the density of iron.
If r = d/2 = 645ft, then:


So


Once you know both masses, you can calculate the force using Newton's universal law of gravitation:

Where G is the gravitational constant:

