Answer:
v_f = 17.4 m / s
Explanation:
For this exercise we can use conservation of energy
starting point. On the hill when running out of gas
Em₀ = K + U = ½ m v₀² + m g y₁
final point. Arriving at the gas station
Em_f = K + U = ½ m v_f ² + m g y₂
energy is conserved
Em₀ = Em_f
½ m v₀ ² + m g y₁ = ½ m v_f ² + m g y₂
v_f ² = v₀² + 2g (y₁ -y₂)
we calculate
v_f ² = 20² + 2 9.8 (10 -15)
v_f = √302
v_f = 17.4 m / s
<span>Using Coulomb's law: k*(-0.3)*(-0.3)/(d^2)=19.2
D is the distance between the two negative charges</span>
Following statements are true
(i) The leather jacket has a lower tendency to attract electrons than sweater.
When the sweater and the leather jacket are in contact with each other, the leather jacket loses electrons and thus becomes positively charged. the electrons are gained by the sweater and it becomes negatively charges.
The opposite charge attract. so the sweater ( negatively charged) will attract protons ( positively charged) . The leather jacket ( positively charged) will attract the electrons ( negatively charged).