answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa05 [86]
2 years ago
9

a 1.50*10^-5 C charge feels a 2.89*10^-3 N force when it moves 288m/s perpendicular (90) deg to a magnetic field. how strong is

the field?
Physics
1 answer:
Sunny_sXe [5.5K]2 years ago
5 0
6.68, -1
Explanation: correct for acellus
You might be interested in
There are devices to put in a light socket that control the current through a lightbulb, thereby increasing its lifetime. Which
Dmitrij [34]

Answer: B

Explanation:

Limiting the maximum current through the bulb. This will help in preserving or improving the bulb's lifetime and also this won't have an effect on the brightness of the bulb as brightness is affected by the average value. Although brightness is a factor of current, reducing the maximum current won't have any bearing on the average current the bulb is getting.

4 0
2 years ago
Odległość między kolejnymi grzbietami fal na morzu wynosi 20 m. Łódź opada z grzbietu fali, unosi się i osiąga ponownie najwyższ
Veronika [31]

Answer:

Explanation:

The distance between successive wave crests at sea is 20 m. The boat descends from the crest of the wave, rises and reaches the highest position again within 5 s. Calculate the wave propagation speed.

Given that,

The distance between two successive crest is 20m

Wavelength is the distance between two successive crest or trough

Then, it's wavelength is λ = 20m

The time to reached the maximum height is 5seconds, then it will take (5×4) to complete one period

Then,

Period T = 20seconds

From wave equation

v = fλ

Where

v is speed

f is frequency and

λ is wavelength

The frequency is related to the period

f =  1 / T

Then,

v = λ / T

So, v = 20 / 20

v = 1 m/s

The speed of propagation of the wave is 1m/s

To Polish

Jeśli się uwzględni,

Odległość między dwoma kolejnymi grzebieniami wynosi 20 m

Długość fali to odległość między dwoma kolejnymi grzebieniami lub dolinami

Zatem jego długość fali wynosi λ = 20 m

Czas do osiągnięcia maksymalnej wysokości wynosi 5 sekund, a następnie ukończenie jednego okresu zajmie (5 × 4)

Następnie,

Okres T = 20 sekund

Z równania falowego

v = fλ

Gdzie

v to prędkość

f oznacza częstotliwość, a

λ jest długością fali

Częstotliwość jest związana z okresem

f = 1 / T

Następnie,

v = λ / T

Zatem v = 20/20

v = 1 m / s

Prędkość propagacji fali wynosi 1m/s

6 0
2 years ago
Charge q1 is distance s from the negative plate of a parallel-plate capacitor. Charge q2=q1/3 is distance 2s from the negative p
Svetlanka [38]

Answer:

The ratio (U₁/U₂) = 6

Explanation:

U, the potential energy is given as

U = kqQ/r

k = Coulomb's constant

q = charge we're concerned about

Q = charge of the negative plate of the capacitor

r = distance of q from the negative plate of the capacitor.

For charge q₁

U₁ = kq₁Q/s

U₂ = kq₂Q/2s

But q₂ = q₁/3

U₂ becomes U₂ = kq₁Q/6s

U₁ = kq₁Q/s

U₂ = kq₁Q/6s

(U₁/U₂) = 6

5 0
2 years ago
When a mass of 25 g is attached to a certain spring, it makes 20 complete vibrations in 4.0 s. what is the spring constant of th
earnstyle [38]

Answer: The spring  of the spring is 25 N/m.

Explanation:

Mass of the body = 25 g= 0.025 kg (1 kg = 1000 g)

Oscillation is 4 sec = 20

Oscillation in 1 sec =\frac{20}{4}=5

Frequency of the vibration of the spring = 5 s^{-1}=5 Hz

Force constant can be calculated bu using the relation between the frequency and, mass and spring constant 'k'

Frequency=\frac{1}{2\pi}\times \sqrt{\frac{k}{m}}

5 s^{-1}=\frac{1}{2\times 3.14}\times \sqrt{\frac{k}{0.025 kg}}

k=24.649 N/m\approx 25 N/m

The spring  of the spring is 25 N/m.

3 0
2 years ago
Read 2 more answers
An airplane travels horizontally at a constant velocity v. An object is dropped from the plane and one second later another obje
Delvig [45]

Answer:

the vertical distance between the two object will increase uniformly when they are dropped after a fixed interval of time

Explanation:

Since airplane is moving horizontally with constant speed v

so when object is dropped from the plane then the speed of the object will be same as that of the speed of the airplane

so we can say that two object when dropped after some interval of time then they always lie in same vertical line

now we know that they both have same acceleration in vertical line so the motion of two objects relative to each other in vertical direction is always uniform motion because they have no acceleration with respect to each other

So the vertical distance between the two object will increase uniformly when they are dropped after a fixed interval of time

8 0
2 years ago
Other questions:
  • What is the final speed if the displacement is increased by a factor of 4?
    12·1 answer
  • a 59kg physics student jumps off the back of her laser sailboat (42kg). after she jumps the laser is found to be travelling at 1
    12·1 answer
  • Two identical boxes are being pulled across a horizontal floor at a constant velocity by a horizontal pulling force of 176 N tha
    6·2 answers
  • Bill throws a tennis ball to his dog. He throws the ball at a speed of 15 m/s at an angle of 30° to the horizontal. Assume he th
    10·1 answer
  • A glider of mass 0.240 kg is on a frictionless, horizontal track, attached to a horizontal spring of force constant 6.00 N/m. In
    14·1 answer
  • To understand the vector nature of momentum in the case in which two objects collide and stick together. In this problem we will
    7·2 answers
  • In the Bohr model of the hydrogen atom, the electron moves in a circular orbit of radius 5.3×10−11m with a speed of 2.2×106m/s.
    15·1 answer
  • The energy from 0.015 moles of octane was used to heat 250 grams of water. The temperature of the water rose from 293.0 K to 371
    12·1 answer
  • At the end of the school day, at exactly 2:30 pm, a group of students run out of the school building and reach the edge of the s
    7·1 answer
  • If you found yourself on the see-through side of this one-way mirror what is the best way you could prevent someone on the other
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!