Answer:

Explanation:
To solve this problem we use the Momentum's conservation Law, before and after the girl catch the ball:
(1)
At the beginning the girl is stationary:
(2)
If the girl catch the ball, both have the same speed:
(3)
We replace (2) and (3) in (1):

We can now solve the equation for v_{f}:

Answer:

Explanation:
Here we know that the glider is accelerated uniformly from rest to final speed of 25.7 m/s in total distance of d = 46.9 m
so we will have


d = 46.9
so for uniformly accelerated motion we have



now we will find the total work done given as change in kinetic energy



now power is given as



Answer:
T=7.4 N hence T<30 N
Explanation:
The figure is likely to be similar to the one attached. Writing the equation for forces we have
F-T=Fa/g where F is the force, T is tension, a is acceleration and g is acceleration due to gravity. Substituting the figures we have the first equation as
30 N - T = (30/9.81)a
Also, we know that T=F*a/g and substituting 10N for F we obtain the second equation as
T = (10/9.81)a
Adding the first and second equations we obtain
30 = 4.077471967
a Hence

and T=a hence
T is approximately 7.4 N
Answer:
Part a)

Part b)

Explanation:
Part a)
change in the energy due to decay of photon is given as

here we know that

now we have



Part b)
While electron return to its ground state it will emit a photon of energy 2/3rd of the total energy
so we have


now to find the wavelength we have



Answer:
Magnetic field at the center of the loop 
Explanation:
It is given that total length of wire is 2 m and number of circular loop is 5 turns.
Therefore ,

We know , magnetic field at the center of loop is given by :

Putting all values in above equation we get :

Hence , this is the required solution.