Answer:
Explanation:
Given mg = 4N .
m = 4 / g
At the bottom of the swing let centripetal acceleration be a
T - mg = ma
9 - 4 = ma
5 = 4 a / g
a = 5g / 4
Answer: the speed at which it falls toward the Earth.
Explanation:
A bullet travelling across Earth's surface with some horizontal velocity is classical example of projectile motion.
Projectile motion is an idealization of the motion under the action of gravity neglecting the influence of the air (no drag force nor friction).
This kind of motion is the result of two independent motions: vertical motion and horizontal motion.
The observed net velocity is the vectorial sum of the vertical and horizontal velocities.
The horizontal velocity is constant, since there is not any force acting in the horizontal axis. Thi is, the object, following the first Law of Newton (inertia law) tends to continue in uniform rectilinear movement (with zero acceleration).
The vertical velocity, this is the velocity at which the bullet falls toward the Earth, is influenced (accelerated) by the action of the gravity of the Earth. So, the vertical velocity is accelerated by the pull of the Earth.
Vertical and horizontal velocities are independent of each other, which means that the speed or the magnitude of the horizontal velocity does not affect the speed at which an object (the bullet) falls toward the Earth.
Answer:
velocity = 472 m/s
velocity = 52.4 m/s
Explanation:
given data
steady rate = 0.750 m³/s
diameter = 4.50 cm
solution
we use here flow rate formula that is
flow rate = Area × velocity .............1
0.750 =
× (4.50×
)² × velocity
solve it we get
velocity = 472 m/s
and
when it 3 time diameter
put valuer in equation 1
0.750 =
× 3 × (4.50×
)² × velocity
velocity = 52.4 m/s
The magnitude of the force<span> a 1.5 x 10-3 C charge exerts on a 3.2 x 10-4 C charge located 1.5 m away is 1920 Newtons. The formula used to solve this problem is:
F = kq1q2/r^2
where:
F = Electric force, Newtons
k = Coulomb's constant, 9x10^9 Nm^2/C^2
q1 = point charge 1, C
q2 = point charge 2, C
r = distance between charges, meters
Using direct substitution, the force F is determined to be 1920 Newtons.</span>
Answer:
The formula to calculate velocity in this case:
v = v0 + at
=> a = (v - v0)/t
= (50 - 0)/4
= 50/4 = 12.5 (m/s2)
Hope this helps!
:)