Answer:

Given:
Radius of ball bearing (r) = 1.5 mm = 0.15 cm
Density of iron (ρ) = 7.85 g/cm³
Density of glycerine (σ) = 1.25 g/cm³
Terminal velocity (v) = 2.25 cm/s
Acceleration due to gravity (g) = 980.6 cm/s²
To Find:
Viscosity of glycerine (
)
Explanation:


Substituting values of r, ρ, σ, v & g in the equation:






Answer:
μ = 0.350
Explanation:
For the person to able to move the box, the force exerted by the person on the box must equal the force exerted by the box:

In this case, force can be calculated as a product of mass (m) by the acceleration of gravity (g) and the coefficient of static friction (μ):

Therefore, for the person to be able to push the box horizontally, the coefficient of static friction between the box and the floor should not be higher than 0.350.
Weight = (mass) x (gravity)
Acceleration of gravity on Earth = 9.8 m/s²
Weight on Earth = (mass) x (9.8 m/s²)
Divide each side by (9.8 m/s²): Mass = (weight) / (9.8 m/s²)
Mass = (650 N) / (9.8 m/s²)
Mass = 66.33 kg (rounded)
Answer:
<em>Entropy Change = 0.559 Times</em>
Explanation:
Entropy change is determined by the change in the micro-states of a system. As we know that the micro-states are the same as measure of disorderness between initial and final states, that's the the amount of change in micro-states determine how much of entropy has changed in the system.
Answer:
at the top
Explanation:
Potential energy is the stored energy, mechanical energy,
or energy possessed by by virtue of the position of an object.an example of potential energy is the energy that a ball possesses by virtue of its sitting at the top of the stairs it being about to roll down the stairs.