Ans: Dilute the solution
Explanation:
To decrease the over-saturation, dilute the solution. Dilution<span> is the process of decreasing the solute's concentration in the </span>solution. It is<span> usually done by mixing with more solvent. In other words, to </span>dilute<span> a </span>solution<span> means to add more solvent without the addition of more solute.</span>
Answer:
In this case, the index of seawater replacement is 1.33, the index of refraction of air is 1, which is why the angle of replacement is less than the incident angle, so the fish seems to be closer
In the opposite case, when the fish looked at the face of the man, the angle of greater reason why it seems to be further away
Explanation:
This exercise can be analyzed with the law of refraction that establishes that a ray of light when passing from one medium to another with a different index makes it deviate from its path,
n₁ sin θ₁ = n₂ sin θ₂
where n₁ and n₂ are the refractive indices of the incident and refracted means and the angles are also for these two means.
In this case, the index of seawater replacement is 1.33, the index of refraction of air is 1, which is why the angle of replacement is less than the incident angle, so the fish seems to be closer
1 sin θ₁ = 1.33 sin θ₂
θ₂ = sin⁻¹ ( 1/1.33 sin θ₁)
In the opposite case, when the fish looked at the face of the man, the angle of greater reason why it seems to be further away
<span>Acceleration is the change in velocity divided by time taken. It has both magnitude and direction. In this problem, the change in velocity would first have to be calculated. Velocity is distance divided by time. Therefore, the velocity here would be 300 m divided by 22.4 seconds. This gives a velocity of 13.3928 m/s. Since acceleration is velocity divided by time, it would be 13.3928 divided by 22.4, giving a final solution of 0.598 m/s^2.</span>
Im guessing it's (a) since the numbers go in chronological order and you read the periodic table left to right
Answer:

Explanation:
Aceleration is a change on the velocity of the object in a given time.
For this case: the initial velocity is

and the final velocity is :

so, the change in velocity is:

and the change in time , according to the problem:

So, the aceleration is:
