Answer:
x2 = 0.99
Explanation:
from superheated water table
at pressure p1 = 0.6MPa and temperature 200 degree celcius
h1 = 2850.6 kJ/kg
From energy equation we have following relation



![2850.6 + [\frac{50^2}{2} * \frac{1 kJ/kg}{1000 m^2/S^2}] = h2 +[ \frac{600^2}{2} * \frac{1 kJ/kg}{1000 m^2/S^2}]](https://tex.z-dn.net/?f=2850.6%20%2B%20%5B%5Cfrac%7B50%5E2%7D%7B2%7D%20%2A%20%5Cfrac%7B1%20kJ%2Fkg%7D%7B1000%20m%5E2%2FS%5E2%7D%5D%20%3D%20h2%20%2B%5B%20%5Cfrac%7B600%5E2%7D%7B2%7D%20%2A%20%5Cfrac%7B1%20kJ%2Fkg%7D%7B1000%20m%5E2%2FS%5E2%7D%5D)
h2 = 2671.85 kJ/kg
from superheated water table
at pressure p2 = 0.15MPa
specific enthalpy of fluid hf = 467.13 kJ/kg
enthalpy change hfg = 2226.0 kJ/kg
specific enthalpy of the saturated gas hg = 2693.1 kJ/kg
as it can be seen from above value hf>h2>hg, so phase 2 is two phase region. so we have
quality of steam x2
h2 = hf + x2(hfg)
2671.85 = 467.13 +x2*2226.0
x2 = 0.99
Answer:
Rod 1 has greater initial angular acceleration; The initial angular acceleration for rod 1 is greater than for rod 2.
Explanation:
For the rod 1 the angular acceleration is
Similarly, for rod 2

Now, the moment of inertia for rod 1 is
,
and the torque acting on it is (about the center of mass)

therefore, the angular acceleration of rod 1 is


Now, for rod 2 the moment of inertia is


and the torque acting is (about the center of mass)


therefore, the angular acceleration
is


We see here that

therefore

In other words , the initial angular acceleration for rod 1 is greater than for rod 2.
Unlike acceleration and velocity, speed does not need to specify the direction of motion. Speed is a scalar quality.
Answer:
3.964 s
Explanation:
Metric unit conversion:
1 miles = 1.6 km = 1600 m.
1 hour = 60 minutes = 3600 seconds
75 mph = 75 * 1600 / 3600 = 33.3 m/s
22.5 mph = 22.5 * 1600/3600 = 10 m/s
Let g = 9.81 m/s2
Friction is the product of coefficient and normal force, which equals to the gravity

The deceleration caused by friction is friction divided by mass according to Newton 2nd law.

So the time required to decelerate from 33.3 m/s to 10 m/s so the wheels don't slide, with the rate of 5.886 m/s2 is
