answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marysya12 [62]
2 years ago
14

Biologists have studied the running ability of the northern quoll, a marsupial indigenous to Australia. In one set of experiment

s, they studied the maximum speed that quolls could run around a curved path without slipping. One quoll was running at 3.2 m/s around a curve with a radius of 1.4 m when it started to slip.What was the coefficient of static friction between the quoll's feet and the ground in this trial?
Physics
2 answers:
denis23 [38]2 years ago
7 0

Answer:

\mu = 0.746

Explanation:

As we know that the force required to move in circle at uniform speed is known as centripetal force

So here we know that centripetal force is given as

F = \frac{mv^2}{R}

so here the force is due to friction force

so it is given as

\mu mg = \frac{mv^2}{R}

\mu = \frac{v^2}{Rg}

now we have

\mu = \frac{3.2^2}{1.4 \times 9.8}

\mu = 0.746

Dominik [7]2 years ago
6 0

Answer:

\mu=0.74            

Explanation:

It is given that,

Speed of one quoll around a curve, v = 3.2 m/s (maximum speed)

Radius of the curve, r = 1.4 m

On the curve, the centripetal force is balanced by the frictional force such that the coefficient of frictional is given by :

\mu=\dfrac{v^2}{rg}

\mu=\dfrac{(3.2\ m/s)^2}{1.4\ m\times 9.8\ m/s^2}

\mu=0.74

So, the coefficient of static friction between the quoll's feet and the ground in this trial is 0.74. Hence, this is the required solution.

You might be interested in
You are stranded in a blizzard. You need water to drink to drink,and you're trying to stay warm.should the melt the snow and dri
Crazy boy [7]
It would be a really bad idea to eat the snow because you obviously are trying to stay warm right? Well, the best thing to do is melt the snow. However, the process of melting the snow would have a few complications as well. But yes, the latter idea (drinking the snow) is a better idea (not the best).
7 0
2 years ago
A rectangular conducting loop of wire is approximately half-way into a magnetic field B (out of the page) and is free to move. S
Black_prince [1.1K]

Answer:

. The loop is pushed to the right, away from the magnetic field

Explanation

This decrease in magnetic strength causes an opposing force that pushes the loop away from the field

8 0
2 years ago
A spring with a spring constant of 2500 n/m. is stretched 4.00 cm. what is the work required to stretch the spring?
Yuri [45]
W = 1/2k*x^2.

k = spring constant = 2500 n/m.
x = distance = 4 cm = 0.04m (convert to same units).

W = 1/2(2500)(0.04)^2 = 2J.
5 0
2 years ago
Read 2 more answers
A rocket moves upward, starting from rest with an acceleration of +29.4 for 3.98 s. it runs out of fuel at the end of the 3.98 s
topjm [15]
U = 0, initial upward speed
a = 29.4 m/s², acceleration up to 3.98 s
a = -9.8 m/s², acceleration after 3.98s

Let h₁ =  the height at time t, for t ≤ 3.98 s
Let h₂ =  the height at time t > 3.98 s

Motion for  t ≤ 3.98 s:
h₁ = (1/2)*(29.4 m/s²)*(3.98 s)² = 232.854 m
Calculate the upward velocity at t = 3.98 s
v₁ = (29.4 m/s²)*(3.98 s) = 117.012 m/s

Motion for t  > 3.98 s
At maximum height, the upward velocity is zero.
Calculate the extra distance traveled before the velocity is zero.
(117.012 m/s)² + 2*(-9.8 m/s²)*(h₂ m) = 0
h₂ = 698.562 m

The total height is
h₁ + h₂ = 232.854 + 698.562 = 931.416 m

Answer: 931.4 m (nearest tenth)

6 0
2 years ago
Read 2 more answers
A 1150 kg car is on a 8.70° hill. using x-y axis tilted down the plane, what is the x-component of the weight?
Fed [463]
I assume the x-y axis are tilted such that the x-axis is parallel to the surface of the hill while the y-axis is perpendicular to it.

In this case, the x-component of the weight is given by:
W_x =mg \sin \theta
where
m is the mass of the car
g is the acceleration of gravity
\theta is the angle of the hill

Substituting numbers into the formula, we find
W_x=(1150 kg)(9.81 m/s^2)(\sin 8.70^{\circ})=1706 N
6 0
2 years ago
Other questions:
  • Find the angle (above the horizontal) at which a projectile achieves its maximum range, if y=y0.
    11·1 answer
  • Lauren wants to know which location in her apartment is best for growing African violets. She has three African violets. She put
    13·1 answer
  • A power drill runs at a voltage of 120 V and draws a current of 4 A. What is the wattage of the drill?
    11·1 answer
  • A Turtle and a Snail are 360 meters apart, and they start to move towards each other at 3 p.m. If the Turtle is 11 times as fast
    12·2 answers
  • A two-resistor voltage divider employing a 2-k? and a 3-k? resistor is connected to a 5-V ground-referenced power supply to prov
    12·1 answer
  • If you calculate the thermal power radiated by typical objects at room temperature, you will find surprisingly large values, sev
    8·1 answer
  • A transformer is to be designed to increase the 30 kV-rms output of a generator to the transmission-line voltage of 345 kV-rms.
    8·1 answer
  • 4 A wheel starts from rest and has an angular acceleration of 4.0 rad/s2. When it has made 10 rev determine its angular velocity
    13·1 answer
  • A record player turntable initially rotating at 3313 rev/min is braked to a stop at a constant rotational acceleration. The turn
    12·1 answer
  • 3. Una máquina lanza un proyectil a una velocidad inicial de 110 m/s , con ángulo de 35°, Calcular: a) Posición del proyectil a
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!