Answer:
5cm east& 1cm west from A
Explanation:
https://brainly.ph/question/2753392
Answer:
Explanation:
In first case we are interested in one time 6 in six rolls
Thus probability = number of chances required/Total chances
= 1/6
Similarly in the second case probability = 2/12 = 1/6
In the same way in last case probability = 100/600 = 1/6
The probability is the same . Thus all the cases has equal chances
<span>These are inert gases, so we can assume they don't react with one another. Because the two gases are also subject to all the same conditions, we can pretend there's only "one" gas, of which we have 0.458+0.713=1.171 moles total. Now we can use PV=nRT to solve for what we want.
The initial temperature and the change in temperature. You can find the initial temperature easily using PV=nRT and the information provided in the question (before Ar is added) and solving for T.
You can use PV=nRT again after Ar is added to solve for T, which will give you the final temperature. The difference between the initial and final temperatures is the change. When you're solving just be careful with the units!
SIDE NOTE: If you want to solve for change in temperature right away, you can do it in one step. Rearrange both PV=nRT equations to solve for T, then subtract the first (initial, i) from the second (final, f):
PiVi=niRTi --> Ti=(PiVi)/(niR)
PfVf=nfRTf --> Tf=(PfVf)/(nfR)
ΔT=Tf-Ti=(PfVf)/(nfR)-(PiVi)/(niR)=(V/R)(Pf/nf-Pi/ni)
In that last step I just made it easier by factoring out the V/R since V and R are the same for the initial and final conditions.</span>
Explanation:
Given that,
Initial volume of tank, V = 6 L
Initial pressure, P = 2 atm
We need to find the final pressure when the air is placed in tanks that have the following volumes if there is no change in temperature and amount of gas:
(a) V' = 1 L
It is a case of Boyle's law. It says that volume is inversely proportional to the pressure at constant temperature. So,

(b) V' = 2500 mL
New pressure becomes :

(c) V' = 750 mL
New pressure becomes :

(d) V' = 8 L
New pressure becomes :

Hence, this is the required solution.
Velocity is a vector quantity and depends on both speed and direction.
In 100m you only travel straight in one direction.
But in 400m you have to turn corners and then go back the way you came, and then turn another corner, you're changing direction - hence changing velocity, even if the speed is the same.