Answer:
a rock of 50kg should be placed =drock=0.5m from the pivot point of see saw
Explanation:
τchild=τrock
Use the equation for torque in this equation.
(F)child(d)child)=(F)rock(d)rock)
The force of each object will be equal to the force of gravity.
(m)childg(d)child)=(m)rockg(d)rock)
Gravity can be canceled from each side of the equation. for simplicity.
(m)child(d)child)=(m)rock(d)rock)
Now we can use the mass of the rock and the mass of the child. The total length of the seesaw is two meters, and the child sits at one end. The child's distance from the center of the seesaw will be one meter.
(25kg)(1m)=(50kg)drock
Solve for the distance between the rock and the center of the seesaw.
drock=25kg⋅m50kg
drock=0.5m
Answer:
Connect C₁ to C₃ in parallel; then connect C₂ to C₁ and C₂ in series. The voltage drop across C₁ the 2.0-μF capacitor will be approximately 2.76 volts.
.
Explanation:
Consider four possible cases.
<h3>Case A: 12.0 V.</h3>

In case all three capacitors are connected in parallel, the
capacitor will be connected directed to the battery. The voltage drop will be at its maximum: 12 volts.
<h3>Case B: 5.54 V.</h3>
![-3.0\;\mu\text{F}-[\begin{array}{c}-{\bf 2.0\;\mu\text{F}}-\\-1.5\;\mu\text{F}-\end{array}]-](https://tex.z-dn.net/?f=-3.0%5C%3B%5Cmu%5Ctext%7BF%7D-%5B%5Cbegin%7Barray%7D%7Bc%7D-%7B%5Cbf%202.0%5C%3B%5Cmu%5Ctext%7BF%7D%7D-%5C%5C-1.5%5C%3B%5Cmu%5Ctext%7BF%7D-%5Cend%7Barray%7D%5D-)
In case the
capacitor is connected in parallel with the
capacitor, and the two capacitors in parallel is connected to the
capacitor in series.
The effective capacitance of two capacitors in parallel is the sum of their capacitance: 2.0 + 1.5 = 3.5 μF.
The reciprocal of the effective capacitance of two capacitors in series is the sum of the reciprocals of the capacitances. In other words, for the three capacitors combined,
.
What will be the voltage across the 2.0 μF capacitor?
The charge stored in two capacitors in series is the same as the charge in each capacitor.
.
Voltage is the same across two capacitors in parallel.As a result,
.
<h3>Case C: 2.76 V.</h3>
.
Similarly,
- the effective capacitance of the two capacitors in parallel is 5.0 μF;
- the effective capacitance of the three capacitors, combined:
.
Charge stored:
.
Voltage:
.
<h3 /><h3>Case D: 4.00 V</h3>
.
Connect all three capacitors in series.
.
For each of the three capacitors:
.
For the
capacitor:
.
Answer: 0.98m
Explanation:
P = -74 mm Hg = 9605 Pa = 9709N/m^2
= 9605 kg m/s^2/m^2
density of water: rho = 1 g/cc = 1 (10^-3 kg)/(10^-2 m)^-3 = 1000 kg/m^3
Pressure equation: P = rho g h
h = P/(rho g)
h = (9605 kg/m/s^2) / (1000 kg/m^3) / (9.8 m/s^2)
h = 0.98 m
0.98m is the maximum depth he could have been.
Answer:

Explanation:
Given:
- mass of monkey,

- angle of vine from the vertical,

Now follow the schematic to understand the symmetry and solution via Lami's theorem.
<u>The weight of the monkey will be balanced equally by the tension in both the vines:</u>
Using Lami's Theorem:



The height of the roof is <u>3.57m</u>
Let the drops fall at a rate of 1 drop per t seconds. The first drop takes 5t seconds to reach the ground. The second drop takes 4t seconds to reach the bottom of the 1.00 m window, while the 3rd drop takes 3t s to reach the top of the window.
Calculate the distances traveled by the second and the third drops s₂ and s₃, which start from rest from the roof of the building.

The length of the window s is given by,

The first drop is at the bottom and it takes 5t seconds to reach down.
The height of the roof h is the distance traveled by the first drop and is given by,

the height of the roof is 3.57 m