Answer:
d = 84 m
Explanation:
As we know that when an object moves with uniform acceleration or deceleration then we can use equation of kinematics to find the distance moved by the object
here we know that
initial speed 
final speed 
time taken by the car to stop

now the distance moved by the car before it stop is given as

now we have


Answer: Change in ball's momentum is 1.5 kg-m/s.
Explanation: It is given that,
Mass of the ball, m = 0.15 kg
Speed before the impact, u = 6.5 m/s
Speed after the impact, v = -3.5 m/s (as it will rebound)
We need to find the change in the magnitude of the ball's momentum. It is given by :
So, the change in the ball's momentum is 1.5 kg-m/s. Hence, this is the required solution.
Read more on Brainly.com - brainly.com/question/12946012#readmore
Answer:
Explanation:
To convert gram / centimeter³ to kg / m³
gram / centimeter³
= 10⁻³ kg / centimeter³
= 10⁻³ / (10⁻²)³ kg / m³
= 10⁻³ / 10⁻⁶ kg / m³
= 10⁻³⁺⁶ kg / m³
= 10³ kg / m³
So we shall have to multiply be 10³ with amount in gm / cm³ to convert it into kg/m³
2.33 gram / cm³
= 2.33 x 10³ kg / m³ .
<span>We put a motion detector at </span>one end of the track<span> and put a cart on the track. ... Next, we put a motorized fan on the cart and let it push the cart down the track. ... This is what I would expect based on the velocity graph, since </span>acceleration<span> equals the slope of the velocity graph, which remains</span>constant<span> in time.</span>