Answer:
A. polymerization
Explanation:
Synthetic plastics are made by linking many simple carbon molecules together to form much larger molecules. This process is called polymerization.
Synthetic or artifical giant molecules consists of synthetic polymers such as plastics, elastomers etc. They are made up of simple monomers which links to form the complex and giant structure.
Monomers are the simplest unit of polymers. Polymers have very great sizes. The size mkaes their structure quite complex. This makes the molecules more disposed in a regular pattern with respect to one another.
The complexity of structure and the attendant effects accounts for the properties and uses that makes synthetic molecules very unique. For example, plastics can be extruded as sheets, pipes and or moulded into other objects.
Answer:
string's damping is 1.03676
Explanation:
given data
sound level = 9.0 dB
time = 1 sec
to find out
string's damping
solution
we will apply here formula for string damping (b) that is
A(t) = A ×
...................1
we know here I ∝ A² so
√I(t) = √I ×
√I(t) / √I =
.....................2
we know sound level decreases 9 dB i.e ΔdB = 9
so we can write
ΔdB = 10 log ( I(t) / I)
9 = 10 log ( I(t) / I)
I(t) / I = 
I(t) / I = 0.1258
and
√I(t) / I) = √0.1258 = 0.3546 .......................3
from equation 2 and 3 we get
0.3546 = 
take ln both side
-bt = ln 0.3546
here we know t is 1 sec
so
- b = - 1.03676
b = 1.03676
so here string's damping is 1.03676
Answer:
It takes you 32.27 seconds to travel 121 m using the speed ramp
Explanation:
<em>Lets explain how to solve the problem</em>
- The speed ramp has a length of 121 m and is moving at a speed of
2.2 m/s relative to the ground
- That means the speed of the ramp is 2.2 m/s
- You can cover the same distance in 78 seconds when walking on
the ground
<em>Lets find your speed on the ground</em>
Speed = Distance ÷ Time
The distance is 121 meters
The time is 78 seconds
Your speed on the ground = 121 ÷ 78 = 1.55 m/s
If you walk at the same rate with respect to the speed ramp that
you walk on the ground
That means you walk with speed 1.55 m/s and the ramp moves by
speed 2.2 m/s
So your speed using the ramp = 2.2 + 1.55 = 3.75 m/s
Now we want to find the time you will take to travel 121 meters using
the speed ramp
Time = Distance ÷ speed
Distance = 121 meters
Speed 3.75 m/s
Time = 121 ÷ 3.75 = 32.27 seconds
It takes you 32.27 seconds to travel 121 m using the speed ramp
Refer to the diagram shown below.
i = the current in the circuit., A
R₁ = the internal resistance of the battery, Ω
R₂ = the resistance of the 60 W load, Ω
Because the resistance across the battery is 8.5 V instead of 9.0 V, therefore
(R₁ )(i A) = 9 - 8.5 = (0.5 V)
R₁*i = 0.5 (10
Also,
R₂*i = 9.5 (2)
Because the power dissipated by R₂ is 60 W, therefore
i²R₂ = 60
From (2), obtain
i*9.5 = 60
i = 6.3158 A
From (1), obtain
6.3158*R₁ = 0.5
R₁ = 0.5/6.3158 = 0.0792 Ω = 0.08 Ω (nearest hundredth)
Answer: 0.08 Ω
Given
Weight of the block A, Wa = 20 lb, weight of block B Wb = 50 lb. Applied
force to block A, P = 6lb, coefficient of static friction µs = 0.4, coefficient
of kinetic friction µk = 0.3. If a force P
is applied to the body, no relative motion will take place until the applied
force is equal to the force of friction Ff, which is acting opposite to the
direction of motion. Magnitude of static force of friction between block A and
block B, Fs = µsN, where N is
reaction force acting on block A. Now, resolve the forces Fx = max. P = (mA +
mB)a,
6 = (20 / 32.2 + 50 / 32.2)a
2.173a = 6
A = 2.76 ft/s^2
To check slipping occurs between block A and block B, consider block A:
P – Ff = mAaA
6 – Ff = 1.71
Ff = 4.29 lb
And also,
N = wA. We know static friction,
Fs = µsN
Fs = 0.4 x 20
Fs = 8lb
Frictional force is less than static friction. Ff < Fs
<span>Therefors, acceleration of block A, aA = 2.76 ft/s^2, acceleration of
block B aB = 2.76 ft/s^2</span>