answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BaLLatris [955]
2 years ago
10

A ball having a mass of 0.20 kilograms is placed at a height of 3.25 meters. If it is dropped from this height, what will be the

kinetic energy of the ball when it reaches 1.5 meters above the ground?
Physics
2 answers:
asambeis [7]2 years ago
7 0
EC_1 + EP_1 = EC2 + EP_2

EC_2 = 0

EC_2 = EP_1 - EP_2

EC_2 = mg(H_1 - H_2) = 0.20 kg * 9.8 m/s^2 * (3.25 m - 1.5m) = 3.43 J
Pachacha [2.7K]2 years ago
6 0

Answer:

3.43 J

Explanation:

One form of energy can convert to another but cannot be created or destroyed.

A body has potential energy due to its position or configuration.

P.E. = m g h

A body has kinetic energy due to its motion.

K.E. = 0.5 mv²

Mechanical energy is the sum of potential energy and kinetic energy and in the absence of any external forces, the mechanical energy remains conserved.

Potential energy+ Kinetic energy (at the top) = Potential energy +kinetic energy (at 3.25 m)

⇒ m g h + 0 = m g h' + K.E.'

⇒K.E. ' = mg (h -h') = 0.20 kg × 9.81 m/s² × (3.25 m - 1.5 m) = 3.43 J

You might be interested in
Q1: A runner is jogging in a straight line at a steady vr= 6.8 km/hr. When the runner is L= 2.4 km from the finish line, a bird
serious [3.7K]

Answer:

Q1: 3.2km

Q2: 4.8K

Explanation:

Q1:

So db is the distance of bird, and dr is the distance of runner

db = 2vr  and the distance of bird is going to be 2 times greater than the runner.

formulas: db = 2vr & db = 2dr

  1. db = 2dr
  2. L + (L - x) = 2x
  3. 2L - x = 2x
  4. 2L = 3x
  5. x = \frac{2}{3}L

Insert it in x = \frac{2}{3}L

\frac{2}{3}(2.4km) = 1.6km

Now we use formula db = 2dr

  1. db = 2L - x
  2. db = 2(2.4km) - 1.6km
  3. <u>db = 3.2km</u>

Q2:

Formulas: Vr = L /Δt & Vb = db/Δt

  1. Vr = L/ Δt ⇒ Δt = \frac{L}{Vr}
  2. \frac{2.4km}{6.8km/hr}
  3. \frac{6}{17}hr

(Km cancel each other)

  1. Vb = db/Δt ⇒ db = VbΔt
  2. 13.6km/hr(\frac{6}{17}hr )
  3. <u>4.8km</u>

(hr cancel each other)

Hope it helps you :)

6 0
2 years ago
A horizontal pipe of diameter 0.81 m has a smooth constriction to a section of diameter 0.486 m . The density of oil flowing in
Lerok [7]

Answer:

2.06 m³/s

Explanation:

diameter of pipe, d = 0.81 m

diameter of constriction, d' = 0.486 m

radius, r = 0.405 m

r' = 0.243 m

density of oil, ρ = 821 kg/m³

Pressure in the pipe, P = 7970 N/m²

Pressure at the constriction, P' = 5977.5 N/m²

Let v and v' is the velocity of fluid in the pipe and at the constriction.

By use of the equation of continuity

A x v = A' x v'

r² x v = r'² x v'

0.405 x 0.405 x v = 0.243 x 0.243 x v'

v = 0.36 v' .... (1)

Use of Bernoulli's theorem

P+\frac{1}{2} \rho v^{2}=P' +\frac{1}{2}\rho'v'^{2}

7970 + 0.5 x 821 x 0.36 x 0.36 x v'² = 5977.5 + 0.5 x 821 x v'²    from (i)

1992.5 = 357.3 v'²

v' = 5.58 m/s

v = 0.36 x 5.58

v = 2 m/s

Rate of flow = A x v = 3.14 x 0.405 x 0.405 x 2 x 2 = 2.06 m³/s

Thus the rate of flow of volume is 2.06 m³/s.

5 0
2 years ago
The gravitational force between two asteroids is 6.2 × 108 n. asteroid y has three times the mass of asteroid z. if the distance
SOVA2 [1]
Let m =  mass of asteroid y.
Because asteroid y has three times the mass of asteroid z, the mass of asteroid z is m/3.

Given:
F = 6.2x10⁸ N
d = 2100 km = 2.1x10⁶ m
Note that
G = 6.67408x10⁻¹¹ m³/(kg-s²)

The gravitational force between the asteroids is
F = (G*m*(m/3))/d² = (Gm²)/(3d²)
or
m² = (3Fd²)/G
     = [(3*(6.2x10⁸ N)*(2.1x10⁶ m)²]/(6.67408x10⁻¹¹ m³/(kg-s²))
    = 1.229x10³² kg²
m = 1.1086x10¹⁶ kg = 1.1x10¹⁶ kg (approx)

Answer: 1.1x10¹⁶ kg
4 0
2 years ago
Read 2 more answers
For a group class project, students are building model roller coasters. Each roller coaster needs to begin at the top of the fir
abruzzese [7]

Case A :

A .75 kg 65 N/m 1.2 m

m = mass of car = 0.75 kg

k = spring constant of the spring = 65 N/m

h = height of the hill = 1.2 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (65) (0.25)² + (0.75 x 9.8 x 1.2) = (0.5) (0.75) v²

v = 5.4 m/s



Case B :

B .60 kg 35 N/m .9 m

m = mass of car = 0.60 kg

k = spring constant of the spring = 35 N/m

h = height of the hill = 0.9 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (35) (0.25)² + (0.60 x 9.8 x 0.9) = (0.5) (0.60) v²

v = 4.6 m/s




Case C :

C .55 kg 40 N/m 1.1 m

m = mass of car = 0.55 kg

k = spring constant of the spring = 40 N/m

h = height of the hill = 1.1 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (40) (0.25)² + (0.55 x 9.8 x 1.1) = (0.5) (0.55) v²

v = 5.1 m/s




Case D :

D .84 kg 32 N/m .95 m

m = mass of car = 0.84 kg

k = spring constant of the spring = 32 N/m

h = height of the hill = 0.95 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (32) (0.25)² + (0.84 x 9.8 x 0.95) = (0.5) (0.84) v²

v = 4.6 m/s


hence closest is in case C at 5.1 m/s




7 0
2 years ago
Read 2 more answers
Is velocity ratio of a machine affected by applying oil on it?Explain with reason.​
disa [49]
Factors affecting friction

The intensity of friction depends on following factors: i) The area involved in friction. ii) The pressure applied on the surfaces. Force = Pressure ´ Area Frictional force will increase, if the area of contact will increase or if pressure applied on the surface increased.

Methods to reduce friction

i) Polish the contact surface. ii) Put oil or grease so that it fills in the small gaps of the flat parts. iii) Use ball bearings to reduce area of contact between rotating parts.

Lubrication

Following methods can be used to reduce friction: Oil is either thin or viscous. It depends upon SAE No. of oil. (SAE means Society of Automotive Engineers). If we use very viscous oil, it does not reach all the parts. Very thin oil will flows away easily and gets wasted. Grease is used in such cases. It is generally used around ball-bearing. Normal grease or oil is never used where there is high pressure, high temperature and high speed. Special lubricants are used in such cases. In cold season the oil becomes thick and in hot season it becomes thin. Therefore selection of lubrication also depends on the season. It is always advisable to refer operating manual of the equipment before selecting the lubricant.
6 0
2 years ago
Other questions:
  • The asteroid belt is a region between Mars and Jupiter that contains a multitude of large rocks and planetary fragments called a
    14·1 answer
  • Can a small child play with fat child on the seesaw?Explain how?
    14·2 answers
  • An object at rest is suddenly broken apart into two fragments by an explosion one fragment acquires twice the kinetic energy of
    14·1 answer
  • Warm moving air makes what?
    5·2 answers
  • a force of 25.0 newtons is applied so as to move a 5.0 kg mass a distance of 20.0 meters. How much work was done? with work plea
    6·1 answer
  • As Aubrey watches this merry-go-round for a total of 2 minutes, she notices the black horse pass by 15 times. What is the period
    12·2 answers
  • Of the following systems, which contains the most heat?
    10·1 answer
  • A water wave traveling in a straight line on a lake is described by the equation:y(x,t)=(2.75cm)cos(0.410rad/cm x+6.20rad/s t)Wh
    11·1 answer
  • The resistance of a very fine aluminum wire with a 20 μm × 20 μm square cross section is 1200 Ω . A 1200 Ω resistor is made by w
    7·1 answer
  • What happens when Dr. Hewitt places a current- carrying wire between the poles of the magnet for the first time?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!