answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BaLLatris [955]
1 year ago
10

A ball having a mass of 0.20 kilograms is placed at a height of 3.25 meters. If it is dropped from this height, what will be the

kinetic energy of the ball when it reaches 1.5 meters above the ground?
Physics
2 answers:
asambeis [7]1 year ago
7 0
EC_1 + EP_1 = EC2 + EP_2

EC_2 = 0

EC_2 = EP_1 - EP_2

EC_2 = mg(H_1 - H_2) = 0.20 kg * 9.8 m/s^2 * (3.25 m - 1.5m) = 3.43 J
Pachacha [2.7K]1 year ago
6 0

Answer:

3.43 J

Explanation:

One form of energy can convert to another but cannot be created or destroyed.

A body has potential energy due to its position or configuration.

P.E. = m g h

A body has kinetic energy due to its motion.

K.E. = 0.5 mv²

Mechanical energy is the sum of potential energy and kinetic energy and in the absence of any external forces, the mechanical energy remains conserved.

Potential energy+ Kinetic energy (at the top) = Potential energy +kinetic energy (at 3.25 m)

⇒ m g h + 0 = m g h' + K.E.'

⇒K.E. ' = mg (h -h') = 0.20 kg × 9.81 m/s² × (3.25 m - 1.5 m) = 3.43 J

You might be interested in
The drawing shows the top view of a door that is 1.68 m wide. two forces are applied to the door as indicated. what is the magni
jekas [21]
First, torque is equal to force times the distance. for the first force that is applied, the torque is zero because is applied at the hinge. so the net torque:
t = ( 12 N ) ( 0 m ) ( cos 30 ) + ( 12 N ) ( 1.68 m ) cos 45
t = 14.26 Nm is the torque with respect to the hinge
8 0
2 years ago
A block of mass 2.00 kg is initially at rest at x=0 on a slippery horizontal surface for which there is no friction. Starting at
Allisa [31]

Answer:

   x = 1,185 m ,     t = 4/3 s ,  F = - 4 N

Explanation:

For this exercise we use Newton's second law

         F = m a = m dv /dt

        β - α t = m dv / dt

        dv = (β – α t) dt

     

We integrate

        v = β t - ½ α t²

We evaluate between the lower limits v = v₀ for t = 0 and the upper limit v = v for t = t

       v-v₀ = β t - ½ α t²

the farthest point of the body is when v = v₀ = 0

  0 = β t - ½ α t²

  t = 2 β / α

  t = 2 4/6

  t = 4/3 s

Let's find the distance at this time

   v = dx / dt

   dx / dt = v₀ + β t - ½ α t2

   dx = (v₀ + β t - ½ α t2) dt

We integrate

   x = v₀ t + ½ β t - ½ 1/3 α t³

   x = v₀ 4/3 + ½ 4 (4/3)² - 1/6 6 (4/3)³

The body comes out of rest

    x = 3.5556 - 2.37

    x = 1,185 m

The value of force is

    F = β - α t

    F = 4 - 6 4/3

   F = - 4 N

8 0
1 year ago
When numbers are very small or very large, it is convenient to either express the value in scientific notation and/or by using a
Oxana [17]

Answer:

5 mg, 5\cdot 10^{-3}g

Explanation:

First of all, let's rewrite the mass in grams using scientific notation.

we have:

m = 0.005 g

To rewrite it in scientific notation, we must count by how many digits we have to move the dot on the right - in this case three. So in scientific notation is

m=5\cdot 10^{-3}g

If  we want to convert into milligrams, we must remind that

1 g = 1000 mg

So we can use the proportion

1 g : 1000 mg = 0.005 g : x

and we find

x=\frac{(1000 mg)(0.005 g)}{1 g}=5 mg

4 0
2 years ago
What magnitude charge creates a 1.0 n/c electric field at a point 1.0 m away?
Stolb23 [73]

Answer:

1.1\cdot 10^{-10}C

Explanation:

The electric field produced by a single point charge is given by:

E=k\frac{q}{r^2}

where

k is the Coulomb's constant

q is the charge

r is the distance from the charge

In this problem, we have

E = 1.0 N/C (magnitude of the electric field)

r = 1.0 m (distance from the charge)

Solving the equation for q, we find the charge:

q=\frac{Er^2}{k}=\frac{(1.0 N/c)(1.0 m)^2}{9\cdot 10^9 Nm^2c^{-2}}=1.1\cdot 10^{-10}C

8 0
1 year ago
A skydiver is using wind to land on a target that is 50 m away horizontally. The skydiver starts from a height of 70 m and is fa
elena55 [62]

Answer:

Answer:

15.67 seconds

Explanation:

Using first equation of Motion

Final Velocity= Initial Velocity + (Acceleration * Time)  

v= u + at

v=3

u=50

a= - 4 (negative acceleration or deceleration)  

3= 50 +( -4 * t)

-47/-4 = t

Time = 15.67 seconds

6 0
1 year ago
Other questions:
  • A constant power is supplied to a rotating disc .the relationship of angular velocity of disc and number of rotations made by th
    5·1 answer
  • What is the final speed if the displacement is increased by a factor of 4?
    12·1 answer
  • You are moving at a speed 2/3 c toward randy when randy shines a light toward you. at what speed do you see the light approachin
    12·1 answer
  • For sprinters running at 12 m/s around a curved track of radius 26 m, how much greater (as a percentage) is the average total fo
    9·1 answer
  • A battleship simultaneously fires two shells toward two identical enemy ships. One shell hits ship A, which is close by, and the
    11·1 answer
  • What charge accumulates on the plates of a 2.0-μF air-filled capacitor when it is charged until the potential difference across
    5·2 answers
  • Suppose the coefficient of static friction between the road and the tires on a car is 0.683 and the car has no negative lift. Wh
    10·1 answer
  • Two thermometers are calibrated, one in degrees Celsius and the other in degrees Fahrenheit.
    14·1 answer
  • A dolphin swims due east for 1.90 km, then swims 7.20 km in the direction south of west. What are the magnitude and direction of
    15·1 answer
  • Which of the following has a particles in most irregular pattern​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!