answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vesna_86 [32]
2 years ago
11

How does energy from the sun affect the motion of molecules in a gas compared to molecules in a liquid?

Physics
2 answers:
Nookie1986 [14]2 years ago
6 0
<h2>Answer:</h2>

Correct option is A.

a. Molecules in a gas move faster than in a liquid.

<h2>Explanation:</h2>

Energy from the sun affect the motion of molecules in a gas compared to molecules in a liquid such as that molecules in a gas move faster than in a liquid. So, first option is correct.

AnnZ [28]2 years ago
3 0
Molecules in a gas move faster than in a liquid.

hope it helps.
You might be interested in
Two long conducting cylindrical shells are coaxial and have radii of 20 mm and 80 mm. The electric potential of the inner conduc
xxMikexx [17]

Answer: 14.52*10^6 m/s

Explanation: In order to explain this problem we have to consider the energy conservation for the electron within the coaxial cylidrical wire.

the change in potential energy for the electron; e*ΔV is  equal to energy kinetic gained for the electron so:

e*ΔV=1/2*m*v^2  v^=(2*e*ΔV/m)^1/2= (2*1.6*10^-19*600/9.1*10^-31)^1/2=14.52 *10^6 m/s

3 0
2 years ago
A large crate sits on the floor of a warehouse. Paul and Bob apply constant horizontal forces to the crate. The force applied by
Delicious77 [7]

Answer:

W = -510.98J

Explanation:

Force = 43N, 61° SW

Displacement = 12m, 22° NE

Work done is given as:

W = F*d*cosA

where A = angle between force and displacement.

Angle between force and displacement, A = 61 + 90 + 22 = 172°

W = 43 * 12 * cos172

W = -510.98J

The negative sign shows that the work done is in the opposite direction of the force applied to it.

6 0
2 years ago
Imagine you derive the following expression by analyzing the physics of a particular system: M= (mv2r)(mGr2). Simplify the expre
alex41 [277]

Answer:

The simplified expression is M  =  \frac{v^2 r}{G}

Explanation:

From the question we are told that  

     M  = \frac{ \frac{m v^2}{r} }{\frac{ mG}{r^2 } }

So simplifying we have

    M  =    \frac{m v^2}{r} *  \frac{r^2 }{ mG }

    M  =  \frac{v^2 r}{G}

Thus the simplified formula is M  =  \frac{v^2 r}{G}

3 0
2 years ago
Consider an object with s=12cm that produces an image with s′=15cm. Note that whenever you are working with a physical object, t
Leni [432]

A. 6.67 cm

The focal length of the lens can be found by using the lens equation:

\frac{1}{f}=\frac{1}{s}+\frac{1}{s'}

where we have

f = focal length

s = 12 cm is the distance of the object from the lens

s' = 15 cm is the distance of the image from the lens

Solving the equation for f, we find

\frac{1}{f}=\frac{1}{12 cm}+\frac{1}{15 cm}=0.15 cm^{-1}\\f=\frac{1}{0.15 cm^{-1}}=6.67 cm

B. Converging

According to sign convention for lenses, we have:

- Converging (convex) lenses have focal length with positive sign

- Diverging (concave) lenses have focal length with negative sign

In this case, the focal length of the lens is positive, so the lens is a converging lens.

C. -1.25

The magnification of the lens is given by

M=-\frac{s'}{s}

where

s' = 15 cm is the distance of the image from the lens

s = 12 cm is the distance of the object from the lens

Substituting into the equation, we find

M=-\frac{15 cm}{12 cm}=-1.25

D. Real and inverted

The magnification equation can be also rewritten as

M=\frac{y'}{y}

where

y' is the size of the image

y is the size of the object

Re-arranging it, we have

y'=My

Since in this case M is negative, it means that y' has opposite sign compared to y: this means that the image is inverted.

Also, the sign of s' tells us if the image is real of virtual. In fact:

- s' is positive: image is real

- s' is negative: image is virtual

In this case, s' is positive, so the image is real.

E. Virtual

In this case, the magnification is 5/9, so we have

M=\frac{5}{9}=-\frac{s'}{s}

which can be rewritten as

s'=-M s = -\frac{5}{9}s

which means that s' has opposite sign than s: therefore, the image is virtual.

F. 12.0 cm

From the magnification equation, we can write

s'=-Ms

and then we can substitute it into the lens equation:

\frac{1}{f}=\frac{1}{s}+\frac{1}{s'}\\\frac{1}{f}=\frac{1}{s}+\frac{1}{-Ms}

and we can solve for s:

\frac{1}{f}=\frac{M-1}{Ms}\\f=\frac{Ms}{M-1}\\s=\frac{f(M-1)}{M}=\frac{(-15 cm)(\frac{5}{9}-1}{\frac{5}{9}}=12.0 cm

G. -6.67 cm

Now the image distance can be directly found by using again the magnification equation:

s'=-Ms=-\frac{5}{9}(12.0 cm)=-6.67 cm

And the sign of s' (negative) also tells us that the image is virtual.

H. -24.0 cm

In this case, the image is twice as tall as the object, so the magnification is

M = 2

and the distance of the image from the lens is

s' = -24 cm

The problem is asking us for the image distance: however, this is already given by the problem,

s' = -24 cm

so, this is the answer. And the fact that its sign is negative tells us that the image is virtual.

3 0
2 years ago
Steam undergoes an adiabatic expansion in a piston–cylinder assembly from 100 bar, 360°C to 1 bar, 160°C. What is work in kJ per
vfiekz [6]

Answer:

work is 130.5 kJ/kg

entropy change is 1.655 kJ/kg-k

maximum  theoretical work is 689.4 kJ/kg

Explanation:

piston cylinder assembly

100 bar, 360°C to 1 bar, 160°C

to find out

work  and amount of entropy  and magnitude

solution

first we calculate work i.e heat transfer - work =   specific internal energy @1 bar, 160°C  - specific internal energy @ 100 bar, 360°C    .................1

so first we get some value from steam table with the help of 100 bar @360°C and  1 bar @ 160°C

specific volume = 0.0233 m³/kg

specific enthalpy = 2961 kJ/kg

specific internal energy = 2728 kJ/kg

specific entropy = 6.004 kJ/kg-k

and respectively

specific volume = 1.9838 m³/kg

specific enthalpy = 2795.8 kJ/kg

specific internal energy = 2597.5 kJ/kg

specific entropy = 7.659 kJ/kg-k

now from equation 1 we know heat transfer q = 0

so - w =   specific internal energy @1 bar, 160°C  - specific internal energy @ 100 bar, 360°C

work = 2728 - 2597.5

work is 130.5 kJ/kg

and entropy change formula is i.e.

entropy change =  specific entropy ( 100 bar @360°C)  - specific entropy ( 1 bar @160°C )

put these value we get

entropy change =  7.659 - 6.004

entropy change is 1.655 kJ/kg-k

and we know maximum  theoretical work = isentropic work

from steam table we know specific internal energy is 2038.3 kJ/kg

maximum  theoretical work = specific internal energy - 2038.3

maximum  theoretical work = 2728 - 2038.3

maximum  theoretical work is 689.4 kJ/kg

3 0
2 years ago
Other questions:
  • Describe several uses of plastic, and explain why plastic is a good choice for these products
    14·1 answer
  • A cart moves along a track at a velocity of 3.5 cm/s. when a force is applied to the cart, its velocity increases to 8.2 cm/s. i
    15·2 answers
  • At a given point on a horizontal streamline in flowing air, the static pressure is â2.0 psi (i.e., a vacuum) and the velocity is
    8·1 answer
  • A bird flies at an average velocity of 3.60 m/s for 18.4 s. How far does it travel? (unit=m)
    10·1 answer
  • A Turtle and a Snail are 360 meters apart, and they start to move towards each other at 3 p.m. If the Turtle is 11 times as fast
    12·2 answers
  • An object of mass 8.0 kg is attached to an ideal massless spring and allowed to hang in the Earth's gravitational field. The spr
    5·2 answers
  • A 0.111 kg hockey puck moving at 55 m/s is caught by a 80. kg goalie at rest. with what speed does the goalie slide on the frict
    5·1 answer
  • series RC circuit is built with a 15 kΩ resistor and a parallel-plate capacitor with 18-cm-diameter electrodes. A 18 V, 36 kHz s
    11·1 answer
  • 7. A local sign company needs to install a new billboard. The signpost is 30 m tall, and the ladder truck is parked 24 m away fr
    10·1 answer
  • A child tugs on a rope attached to a 0.62-kg toy with a horizontal force
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!