Answer:
A.)1.52cm
B.)1.18cm
Explanation:
angular speed of 120 rev/min.
cross sectional area=0.14cm²
mass=12kg
F=120±12ω²r
=120±12(120×2π/60)^2 ×0.50
=828N or 1068N
To calculate the elongation of the wire for lowest and highest point
δ=F/A
= 1068/0.5
δ=2136MPa
'E' which is the modulus of elasticity for alluminium is 70000MPa
δ=ξl=φl/E =2136×50/70000=1.52cm
δ=F/A=828/0.5
=1656MPa
δ=ξl=φl/E
=1656×50/70000=1.18cm

Answer:
a) λ = 189.43 10⁻⁹ m b) λ = 269.19 10⁻⁹ m
Explanation:
The diffraction network is described by the expression
d sin θ= m λ
Where m corresponds to the diffraction order
Let's use trigonometry to find the breast
tan θ = y / L
The diffraction spectrum is measured at very small angles, therefore
tan θ = sin θ / cos θ = sin θ
We replace
d y / L = m λ
Let's place in the first order m = 1
Let's look for the separation of the lines (d)
d = λ L / y
d = 501 10⁻⁹ 9.95 10⁻² / 15 10⁻²
d = 332.33 10⁻⁹ m
Now we can look for the wavelength of the other line
λ = d y / L
λ = 332.33 10⁻⁹ 8.55 10⁻²/15 10⁻²
λ = 189.43 10⁻⁹ m
Part B
The compound wavelength B
λ = 332.33 10⁻⁹ 12.15 10⁻² / 15 10⁻²
λ = 269.19 10⁻⁹ m
Answer:
Distance of Earth from the Sun has nothing to do with the seasons only the tilt is responsible for the change in seasons.
Explanation:
The Earth's tilt does cause the seasons but the distance from the sun and has nothing to do with the change in seasons. In June, when the Northern Hemisphere is tilted in the direction of the Sun during the Northern Hemisphere summer the Earth is actually farthest from the Sun. In January, when the Southern Hemisphere is tilted in the direction of the Sun during the Northern Hemisphere winter the Earth is actually closest to the Sun. This is caused due to the elliptical orbit of the Earth. So, distance of Earth from the Sun has nothing to do with the seasons.
Answer:
Common Sense
Explanation:
The chick has probably seen other chicks get caught by the Hawk and knows not to go near, or saw a giant bird flying straight towards it and used common sense to identify it as danger and run away. Although if this is for a test or a grade or something, please do not use the answer, it is most likely incorrect. This is honestly my best answer.
Answer:
a) 0.0625 I_1
b) 3.16 m
Explanation:
<u>Concepts and Principles </u>
The intensity at a distance r from a point source that emits waves of power P is given as:
I=P/4π*r^2 (1)
<u>Given Data</u>
f (frequency of the tuning fork) = 250 Hz
I_1 is the intensity at the source a distance r_1 = I m from the source.
<u>Required Data</u>
- In part (a), we are asked to determine the intensity I_2 a distance r_2 = 4 in from the source.
- In part (b), we are asked to determine the distance from the tuning fork at which the intensity is a tenth of the intensity at the source.
<u>solution:</u>
(a)
According to Equation (1), the intensity a distance r is inversely proportional to the distance from the source squared:
I∝1/r^2
Set the proportionality:
I_1/I_2=(r_2/r_1)^2 (2)
Solve for I_2 :
I_2=I_1(r_2/r_1)^2
I_2=0.0625 I_1
(b)
Solve Equation (2) for r_2:
r_2=(√I_1/I_2)*r_1
where I_2 = (1/10)*I_1:
r_2=(√I_1/1/10*I_1)*r_1
=3.16 m